Content and format preferences of a depression prevention program: A study in perinatal women

Keywords: depression prevention; Information and Communication Technologies; Latina; perinatal; treatment preferences


Background: this study investigated ethnic differences in the preferred content and delivery method of a depression prevention program for perinatal women. Method: participants were 163 pregnant (66.9%) and postpartum (33.1%) women. Women identified themselves as Latinas (45.4%) or non-Latinas (54.6%). Results: overall, women preferred individual and onsite therapy across contents. Only when the content was related to improving communication, they were willing to incorporate the partner. There were no ethnic differences in the preferred format. Regarding content, women preferred to receive “information on the pregnancy process including physical and psychological changes.” Non-Latinas had a higher preference for “receiving regular check-ins on their emotional state” than Latinas. Conclusions: these results should be considered when developing future perinatal depression prevention programs and evidence that work needs to be done if we want online interventions to be viewed more favorably by perinatal women.


Download data is not yet available.


Author, 2016.

Bales, M., Pambrun, E., Melchior, M., Glangeaud-Freudenthal, N. M. C., Charles, M. A., Verdoux, H., & Sutter-Dallay, A. L. (2015). Prenatal psychological distress and access to mental health care in the ELFE cohort. European Psychiatry, 30(2), 322–328.

Byatt, N., Simas, T. A. M., Lundquist, R. S., Johnson, J. V., & Ziedonis, D. M. (2012). Strategies for improving perinatal depression treatment in North American outpatient obstetric settings. Journal of Psychosomatic Obstetrics and Gynecology, 33(4), 143–161.

Dimidjian, S., & Goodman, S. H. (2014). Preferences and attitudes toward approaches to depression relapse/recurrence prevention among pregnant women. Behaviour Research and Therapy, 54, 7–11.

Donker, T., Cuijpers, P., Stanley, D., & Danaher, B. (2015). The Future of Perinatal Depression Identification Can Information and Communication Technology Optimize Effectiveness? In J. M. A. W. Gemmill (Ed.), Identifying Perinatal Depression and Anxiety. Evidence-Based Practise in Screening Psychosocial Assessment, and Management (John Wiley, pp. 240–255). Oxford, UK: Wiley-Blackwell.

Elsenbruch, S., Benson, S., Rücke, M., Rose, M., Dudenhausen, J., Pincus-Knackstedt, M. K., … Arck, P. C. (2007). Social support during pregnancy: Effects on maternal depressive symptoms, smoking and pregnancy outcome. Human Reproduction, 3(1), 869–877.

Field, T. (2011). Prenatal depression effects on early development: A review. Infant Behavior & Development, 34(1), 1–14.

Georgas, J., Berry, J. ., van de Vijver, F., Kagitcibasi, C., & Poortinga, Y. . (2006). Families across cultures: A 30-nation psychological study. Cambridge, United Kingdom: Cambridge University Press.

Goodman, J. H. (2009). Women’s attitudes, preferences, and perceived barriers to treatment for perinatal depression. Birth, 36(1), 60–69.

Grote, V., Vik, T., von Kries, R., Luque, V., Socha, J., Verduci, E., … Koletzko, B. (2010). Maternal postnatal depression and child growth: A european cohort study. BMC Pediatrics, 10, 14–22.

Haga, S. M., Drozd, F., Brendryen, H., & Slinning, K. (2013). Mamma mia: a feasibility study of a web-based intervention to reduce the risk of postpartum depression and enhance subjective well-being. JMIR Research Protocols, 2(2), e29.

Hewitt, C. E., & Gilbody, S. M. (2009). Is it clinically and cost effective to screen for postnatal depression: A systematic review of controlled clinical trials and economic evidence. BJOG: An International Journal of Obstetrics and Gynaecology, 116(8), 1019–1027.

IBM Corp. (2013). IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.

Ickovics, J. R., Reed, E., Magriples, U., Westdahl, C., Schindler Rising, S., & Kershaw, T. S. (2011). Effects of group prenatal care on psychosocial risk in pregnancy: Results from a randomised controlled trial. Psychology & Health, 26(2), 235–250.

Internet World Stats. (2017). Internet usage statistics. Retrieved August 27, 2018, from

Kingston, D., McDonald, S., Tough, S., Austin, M.-P., Hegadoren, K., & Lasiuk, G. (2014). Public views of acceptability of perinatal mental health screening and treatment preference: a population based survey. BMC Pregnancy and Childbirth, 14(1), 67.

Lara, M. A., Navarrete, L., Nieto, L., Barba Martín, J. P., Navarro, J. L., & Lara-Tapia, H. (2015). Prevalence and incidence of perinatal depression and depressive symptoms among Mexican women. Journal of Affective Disorders, 175, 18–24.

Mallou, J. V., Boubeta, A. R., & Cueto, E. G. (2003). Presentación de una Escala de Satisfacción con los Servicios Sanitarios de Atención Primaria. Psicothema, 15(4), 656–661.

Maloni, J. A., Przeworski, A., & Damato, E. G. (2013). Web recruitment and internet use and preferences reported by women with postpartum depression after pregnancy complications. Archives of Psychiatric Nursing, 27(2), 90–95.

O’Mahen, H. A., & Flynn, H. A. (2008). Preferences and Perceived Barriers to Treatment for Depression during the Perinatal Period. Journal of Women’s Health, 17(8), 1301–1309.

O’Mahen, H. A., Richards, D. A., Woodford, J., Wilkinson, E., McGinley, J., Taylor, R. S., & Warren, F. C. (2014). Netmums: A phase II randomized controlled trial of a guided Internet behavioural activation treatment for postpartum depression. Psychological Medicine, 44(8), 1675–1689.

Osma, J., Barrera, A. Z., & Ramphos, E. (2016). Are Pregnant and Postpartum Women Interested in Health-Related Apps? Implications for the Prevention of Perinatal Depression. Cyberpsychology, Behavior and Social Networking, 19(6), 412–415.

Parker, R. M., Dmitrieva, E., Frolov, S., & Gazmararian, J. A. (2012). Text4baby in the United States and Russia: An opportunity for understanding how mHealth affects maternal and child health. Journal of Health Communication, 17(SUPPL. 1), 30–36.

Peeters, J. M., Krijgsman, J. W., Brabers, A. E., Jong, J. D. De, & Friele, R. D. (2016). Use and Uptake of eHealth in General Practice: A Cross-Sectional Survey and Focus Group Study Among Health Care Users and General Practitioners. JMIR Medical Informatics, 4(2), e11.

Supplee, L. H., Parekh, J., & Johnson, M. (2018). Principles of Precision Prevention Science for Improving Recruitment and Retention of Participants. Prevention Science, 19(5), 689–694.

Vázquez, F. L., Blanco, V., Torres, Á., Otero, P., & Hermida, E. (2014). La eficacia de la prevención indicada de la depresión: Una revisión. Anales de Psicología, 30(1), 9–24.

Vesga-López, O., Blanco, C., Keyes, K., Olfson, M., Grant, B. F., & Hasin, D. S. (2008). Psychiatric disorders in pregnant and postpartum women in the United States. Archives of General Psychiatry, 65(7), 805–815.

Zayas, L. H., Jankowski, K. R. B., & McKee, M. D. (2003). Prenatal and Postpartum Depression Among Low-Income Dominican and Puerto Rican Women. Hispanic Journal of Behavioral Sciences, 25(3), 370–385.
How to Cite
Osma, J., Suso-Ribera, C., Martínez-Borba, V., & Barrera, A. Z. (2019). Content and format preferences of a depression prevention program: A study in perinatal women. Anales De Psicología / Annals of Psychology, 36(1), 56-63. Retrieved from
Clinical and Health Psychology