Calibración del resultado de una prueba escrita en estudiantes de ciencias de secundaria: el efecto del sexo

Autores/as

DOI: https://doi.org/10.6018/rie.384031
Palabras clave: educación secundaria, metacognición, calibración, sexo, secondary education, metacognition, calibration, sex

Resumen

Durante las últimas décadas se han encontrado importantes diferencias por sexo en la enseñanza y el aprendizaje de las disciplinas científicas. Por otro lado, la autoevaluación por parte de los estudiantes supone un aspecto fundamental en el ciclo de autorregulación del aprendizaje y, por tanto, en su rendimiento. El objetivo de este trabajo es analizar la metacognición de los estudiantes de secundaria y, en particular, el efecto del sexo en las mismas. Para ello se ha medido la calibración de 507 estudiantes. Nuestros análisis muestran que las chicas calibran mejor su nota que los chicos a pesar de que estos últimos muestran más seguridad en sus juicios. Se ha encontrado una tendencia de ambos sexos a la sobreestimación de sus calificaciones en una prueba escrita. Por otro lado, los estudiantes con alto rendimiento son más precisos y tienden a sobrevalorar sus actuaciones. En cambio, los de rendimiento bajo son más imprecisos y tienden a subestimar sus calificaciones en la prueba. Aunque este efecto se observa en ambos sexos, su tamaño es superior en el caso de las chicas. En vista de los resultados, los estudiantes de rendimiento alto utilizan con más eficacia la retroalimentación que generan durante la prueba que los de rendimiento bajo. Las diferencias por sexo podrían tener su origen en las diferentes actitudes y motivaciones de los chicos y las chicas hacia la ciencia.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abraham, J. y Barker, K. (2015). Exploring gender difference in motivation, engagement and enrolment behavior of senior secondary physics students in New South Wales. Research in Science Education, 45(1), 59-73, doi: 10.1007/s11165-014-9413-2.

Acar Ö., Türkmen L., y Bilgin A., (2015). Examination of Gender Differences on Cognitive and Motivational Factors that Influence 8th Graders’ Science Achievement in Turkey. Eurasia Journal of Mathematics Science Technology Education, 11(5), 1027–1040, doi: 10.12973/eurasia.2015.1372a

Baars, M., Vink, S., van Gog, T., de Bruin, A., y Paas, F. (2014). Effects of training self-assessment and using assessment standards on retrospective and prospective monitoring of problem solving. Learning and Instruction, 33, 92–107, doi: 10.1016/j.learninstruc.2014.04.004

Bol, L., Hacker, D. J., Walck, C. C., y Nunnery, J. A. (2012). The effects of individual or group guidelines on the calibration accuracy and achievement of high school biology students. Contemporary Educational Psychology, 37(4), 280–287, doi: 10.1016/j.cedpsych.2012.02.004

Brannick, M. T., Miles, D. E., y Kisamore, J. L. (2005). Calibration between student mastery and self‐efficacy. Studies in Higher Education, 30(4), 473–483, doi: 10.1080/03075070500160244

Brown, G. T. L., Andrade, H. L., y Chen, F. (2015). Accuracy in student self-assessment: directions and cautions for research. Assessment in Education: Principles, Policy & Practice, 22(4), 444–457, doi: 10.1080/0969594X.2014.996523

Chiu, M. M., y Klassen, R. M. (2010). Relations of mathematics self-concept and its calibration with mathematics achievement: Cultural differences among fifteen-year-olds in 34 countries. Learning and Instruction, 20(1), 2–17, doi: 10.1016/j.learninstruc.2008.11.002

de Bruin, A. B. H., Kok, E. M., Lobbestael, J. y de Grip, A. (2017). The impact of an online tool for monitoring and regulating learning at university: overconfidence, learning strategy, and personality. Metacognition and Learning, 12(1), 21–43, doi: 10.1007/s11409-016-9159-5

Dent, A. L., y Koenka, A. C. (2016). The Relation Between Self-Regulated Learning and Academic Achievement Across Childhood and Adolescence: A Meta-Analysis. Educational Psychology Review, 28(3), 425–474, doi: 10.1007/s10648-015-9320-8

Dunlosky, J., y Metcalfe, J. (2008). Metacognition. Los Angeles, CA: SAGE Publications

Dunning, D. (2005). Self-insights: Roadblocks and detours on the path of knowing thyself. New York: Psychology Press.

Eddy, S. L., y Brownell, S. E. (2016). Beneath the numbers: A review of gender disparities in undergraduate education across science, technology, engineering, and math disciplines. Physical Review Physics Education Research, 12(2), 020106, doi: 10.1103/PhysRevPhysEducRes.12.020106

Erickson, S., y Heit, E. (2015). Metacognition and confidence: comparing math to other academic subjects. Frontiers in Psychology, 6, 742, doi: 10.3389/fpsyg.2015.00742

Fischer, F., Schult, J., y Hell, B. (2013). Sex differences in secondary school success: Why female students perform better. European journal of psychology of education, 28(2), 529-543, doi: 10.1007/s10212-012-0127-4

Follmer, D. J., y Sperling, R. A. (2016). The mediating role of metacognition in the relationship between executive function and self-regulated learning. British Journal of Educational Psychology, 86(4), 559–575, doi: 10.1111/bjep.12123

Glynn, S. M., Brickman, P., Armstrong, N., y Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with science majors and nonscience majors. Journal of Research in Science Teaching, 48(10), 1159–1176, doi: 10.1002/tea.20442

Gutiérrez, A. P., y Price, A. F. (2017). Calibration between undergraduate students' prediction of and actual performance: The role of gender and performance attributions. The Journal of Experimental Education, 85(3), 486-500, doi: 10.1080/00220973.2016.1180278

Gutierrez, A. P., Schraw, G., Kuch, F., y Richmond, A. S. (2016). A two-process model of metacognitive monitoring: Evidence for general accuracy and error factors. Learning and Instruction, 44, 1–10, doi: 10.1016/j.learninstruc.2016.02.006

Hacker, D. J., Bol, L., y Bahbahani, K. (2008). Explaining calibration accuracy in classroom contexts: the effects of incentives, reflection, and explanatory style. Metacognition and Learning, 3(2), 101–121, doi: 10.1007/s11409-008-9021-5

Hacker, D. J., Bol, L., Horgan, D. D., y Rakow, E. A. (2000). Test prediction and performance in a classroom context. Journal of Educational Psychology, 92(1), 160–170, doi: 10.1037/0022-0663.92.1.160

Hacker, D. J., Bol, L., y Keener, M. C. (2008). Metacognition in education: A focus on calibration. In J. Dunlosky y R. A. Bjork (Eds.), Handbook of metamemory and memory (p. 429455). New York: Taylor & Francis Group.

Hawker, M. J., Dysleski, L., y Rickey, D. (2016). Investigating General Chemistry Students’ Metacognitive Monitoring of Their Exam Performance by Measuring Postdiction Accuracies over Time. Journal of Chemical Education, 93(5), 832–840, doi: 10.1021/acs.jchemed.5b00705

Jacobs, J.E. (2005). Twenty-five years of research on gender and ethnic differences in math and science career choices: What havewe learned? En J.E. Jacobs & S.D. Simpkins (Eds.), New Directions for Child and Adolescent Development, 110, 85–94. doi: 10.1002/cd.151

Karatjas, A. G. (2013). Comparing College Students’ Self-Assessment of Knowledge in Organic Chemistry to Their Actual Performance. Journal of Chemical Education, 90(8), 1096–1099, doi: 10.1021/ed400037p

Karatjas, A. G. (2014). Use of Student Self-Assessment of Exams To Investigate Student Learning in Organic Chemistry Classes. En Kendhammer, L. K. y Murphy, K. L. (Eds.) Innovative Uses of Assessments for Teaching and Research (pp. 133–143). American Chemical Society, doi: 10.1021/bk-2014-1182.ch008

Karatjas, A. G., y Webb, J. (2015). The Role of Gender in Grade Perception in Chemistry Courses. Journal of College Science Teaching, 45(2), 30–35, doi: 10.20429/ijsotl.2017.110214

Kruger, J., y Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121–1134.

Lindsey, B. A., y Nagel, M. L. (2015). Do students know what they know? Exploring the accuracy of students’ self-assessments. Physical Review Special Topics - Physics Education Research, 11(2), 20103, doi: 10.1103/PhysRevSTPER.11.020103

Mujtaba, T., y Reiss, M. J. (2013). What Sort of Girl Wants to Study Physics After the Age of 16? Findings from a Large-scale UK Survey. International Journal of Science Education, 35(17), 2979–2998, doi: 10.1080/09500693.2012.681076

Nietfeld, J. L., Shores, L. R., y Hoffmann, K. F. (2014). Self-regulation and gender within a game-based learning environment. Journal of Educational Psychology, 106(4), 961–973, doi: 10.1037/a0037116

Palmer T.-A., Burke P. F., y Aubusson P. (2017). Why school students choose and reject science: a study of the factors that students consider when selecting subjects. Int. J. Sci. Educ., 39(6), 645–662, doi: 10.1080/09500693.2017.1299949

Pirmohamed, S., Debowska, A., y Boduszek, D. (2017). Gender differences in the correlates of academic achievement among university students. Journal of Applied Research in Higher Education, 9(2), 313-324. doi: 10.1108/JARHE-03-2016-0015

Potvin P., y Hasni A., (2014). Interest, motivation and attitude towards science and technology at K-12 levels: a systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85–129, doi: 10.1080/03057267.2014.881626

Schraw, G., Potenza, M. T., y Nebelsick-Gullet, L. (1993). Constraints on the calibration of performance. Contemporary Educational Psychology, 18(4), 455–463, doi: 10.1006/ceps.1993.1034

Sharma, M. D., y Bewes, J. (2011). Self-monitoring: Confidence, academic achievement and gender differences in Physics. Journal of Learning Design, 4(3), 1–13, doi: 10.5204/jld.v4i3.76

Schumm, M. F., y Bogner, F. X. (2016). Measuring adolescent science motivation. International Journal of Science Education, 38(3), 434–449, doi: 10.1080/09500693.2016.1147659

Vázquez Alonso, Á., y Manassero Más, M. (2015). La elección de estudios superiores científico-técnicos: análisis de algunos factores determinantes en seis países. Revista Eureka sobre enseñanza y divulgación de las ciencias, 12(2), 264-277.

Volz-Sidiropoulou, E., y Gauggel, S. (2012). Do subjective measures of attention and memory predict actual performance? Metacognition in older couples. Psychology and Aging, 27(2), 440–450, doi: 10.1037/a0025384

Zamora Á., y Ardura D., (2014). ¿En qué medida utilizan los estudiantes de Física de Bachillerato sus propios errores para aprender? Una experiencia de autorregulación en el aula de secundaria. Enseñanza de las ciencias, 32(2), 253–268, doi: 10.5565/rev/ensciencias.1067

Zamora Á., Suárez J. M., y Ardura D., (2018). Error detection and self-assessment as mechanisms to promote self-regulation of learning among secondary education students. Journal of Educational Research, 111(2), 175–185, doi: 10.1080/00220671.2016.1225657

Publicado
01-07-2020
Cómo citar
Ardura, D., & Galán, A. (2020). Calibración del resultado de una prueba escrita en estudiantes de ciencias de secundaria: el efecto del sexo. Revista de Investigación Educativa, 38(2), 329–344. https://doi.org/10.6018/rie.384031
Número
Sección
Artículos