Creation of an immersive virtual reality environment for communication and social interaction: a pilot study in students with autism spectrum disorders
Supporting Agencies
- Ministerio de Ciencia e Innovación (España) referencia PID2020-112611RB-I00
Abstract
Nowadays, technology occupies a preeminent place in different social spheres. In the educational world, technology and, more specifically, virtual reality can respond to the diversity of students present in the classroom. In this line, the aim of this study is to explore the application of immersive virtual reality to promote communication and social interaction in students with ASD. For this purpose, an immersive virtual reality (IVR) environment has been designed in a classroom where participants are presented with different learning situations in the classroom. The sample consisted of three participants, with whom a pilot study was developed with interaction and social communication activities with the virtual teacher and the NAO robot. The IVR glasses were used for data collection and a questionnaire was designed ad hoc. The results show that the students' attention was attracted to the elements that make up the IVR environment. Likewise, a good acceptance of the IVR device and satisfactory interactions have been observed. In conclusion, it can be stated that the RVI environment has provided realism and remarkable possibilities for interaction
Downloads
References
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arington, VA: American Psychiatric Publishing.
Antúnez, S., Del Carmen, L., Imbernón, F. & Parcerisa, A. (1999). Del Proyecto Educativo a la Programación del Aula. El que, el cuándo y el cómo de los instrumentos de la planificación didáctica. Editorial Grao: Barcelona.
Anzalone, S., Tilmont, E., Bouncenna, S., Xavier, J., Jouen, A., Boudeau, N., Maharatna, K., Chetouani, M. & Cohen, D. (2014). How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3D + time) environment during a joint attention induction task with a robot. Research in Autism Spectrum Disoders, 8(7), 814-826. https://doi.org/10.1016/j.rasd.2014.03.002
Aresti-Bartolome, N., & Garcia-Zapirain, B. (2014). Technologies as support tools for persons with autistic spectrum disorder: A systematic review. International Journal of Environmental Research and Public Health,11, 7767–7802.
Bai, Q., Shehata, M. & Nada, A. (2022). Review study of using Euler angles and Euler parameters in multibody modeling of spatial holonomic and non-holonomic systems. Int. J. Dynam. Control 10, 1707–1725.https://doi.org/10.1007/s40435-022-00913-9
Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., Warren, Z., Kurzius-Spencer, M., Zahorodny, W., Robinson Rosenberg, C., White, T., Durkin, M. S., Imm, P., Nikolaou, L., Yeargin-Allsopp, M., Lee, L.-C., Harrington, R., Lopez, M., Fitzgerald, R. T., Hewitt, A. & Dowling, N. F. (2018). Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveillance Summaries, 67(6), 1–23. https://doi.org/10/gfx5sc
Bailenson, J (2018). Experience on demand: what virtual reality is, how it works, and what it can do. W. W. Norton & Company, New York
Bangor, A., Kortum, P. & Miller, J. T. (2008). An empirical evaluation of the system usability scale. International Journal of Human-Computer Interaction, 24(6), 574–594.
Baron-Cohen, S. (2006). The hyper-systemizing, assortative mating theory of autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(5), 865–872. https://doi.org/10.1016/j.pnpbp.2006.01.010.
Baxter, A., Brugha, T., Erskin, H., Scheurer, R., Vos, T. & Scott, J. (2015) The epidemiology and global burden of autism spectrum disorders. Psychol Med 45(3), 601–613. https://doi.org/10.1017/S003329171400172X
Bekele, E., Crittendon, J., Swanson, A., Sarkar, N. & Warren, Z. (2014). Pilot clinical application of an adaptative robotic system for young children with autism. Autism, 18 (1), 598-608.
Bellani, M., Fornasari, L., Chittaro, L. & Brambilla, P. (2011). Virtual reality in autism: State of the art. Epidemiology and Psychiatric Sciences, 20(3), 235–238. https://doi.org/10.1017/S2045796011000448
Bevan, N., Kirakowski, J. & Maissel, J. (1991). What is usability?. In Proceedings of the 4th International Conference on HCI (pp. 1-5). Elsevier. Stuttgart.
Biocca, F. & Delaney, B. (1995). Immersive virtual reality technology. Communication in the Age of Virtual Reality, 15(32), 10–5555.
Blascovich, J., Loomis, J., Beall, A., Swinth, K., Hoyt, C. & Bailenson, J. (2002). Immersive virtual environment technology as a methodological tool for social psychology. Psychological Inquiry, 13, 103–124.
Bradley, R. & Newbutt, N. (2018). Autism and virtual reality head-mounted displays: A state of the art systematic review. Journal of Enabling Technologies, 12(3), 101–113. https://doi.org/10.1108/JET-01-2018-0004
Breazeal, C., Harris, P., DeSteno, D., Westlund, J., Dickens, L. & Jeong, S. Young children treat robots as informants. Top. Cogn. Sci., 8(1), 481-491.
Bonoma, T. (1985). Case Research in Marketing: opportunities, Problems, and a Process. Journal of Marketing Research, 22(2), 199-208.
Boucenna, S., Narzisi, A., Tilmont, E., Muratori, F., Pioggia, G., Cohen, D., et al. (2014). Interactive technologies for autistic children: A review. Cognitive Computation,6(4), 722–740.
Bozgeyikli, L., Bozgeyikli, E., Raij, A., Alqasemi, R., Katkoori, S. & Dubey, R. (2017). Vocational Rehabilitation of Individuals with Autism Spectrum Disorder with Virtual Reality. ACM Transactions on Accessible Computing, 10 (2), 1-27.
Bozgeyikli, L., Raij, A., Katkoori, S., & Alqasemi, R. (2018). Effects of Virtual Reality Properties on User Experience of Individuals with Autism. ACM Transactions on Accessible Computing, 11(4), 1-27.
Carreño-León, M., Leyva-Carrillo, A., Carreño, M. & Sandoval, A. (2019). Consideraciones para el diseño de interfaces de usuario en aplicaciones para niños con autismo. In F. Álvarez, M. Carreño-León, y J. Sandoval (Eds.), Avances sobre reflexiones, aplicaciones y tecnologías inclusivas (pp. 70–76). Conaic.
Chevalier, P., Martin, JC., Isableu, B. et al. (2017) Impact of sensory preferences of individuals with autism on the recognition of emotions expressed by two robots, an avatar, and a human. Auton Robot, 41 (1), 613–635 https://doi.org/10.1007/s10514-016-9575-z
Dawson, G., Toth, K., Abbott, R., Osterling, J., Munson, J., Estes, A. & Liaw, J. (2004). Early social attention impairments in autism: Social orienting, joint attention, and attention to distress. Developmental Psychology, 40(2), 271–283. https://doi.org/10.1037/0012-1649.40.2.271
Díaz-Muñoz, G. (2020). Metodología del estudio piloto. Revista chilena de radiología, 26(3), 100-104.
Didehbani, N., Allen, T., Kandalaft, M., Krawczyk, D. & Chapman, S. (2016). Virtual Reality Social Cognition Training for children with high functioning autism. Computers in Human Behaviour 62(1), 703-711. https://doi.org/10.1016/j.chb.2016.04.033
Diehl, J. J., Schmitt, L. M., Villano, M., & Crowell, C. R. (2012). The clinical use of robots for individuals with autism spectrum disorders: A critical review. Research in Autism Spectrum Disorders,6(1), 249–262.
Duquette, A., Michaud, F. & Mercier, H. (2008). Exploring the use of mobile robot as an imitation agent with children with low-functioning autism. Autonomous. Robot, 24(1), 147-157.
Fabri, M., Moore, D. & Hobbs, D. (1999). The emotional avatar: Non-Verbal communication between inhabitants of collaborative virtual environments. En A. Braffot, R. Gherbi, S. Gibet, D. Teeil, J. Richardson (eds). Gesture-Based communication in Human Computer Interaction. Lecture Notes in Computer Science (pp. 269-273). Springer: Suiza
Feil-Seifer, D., & Mataric, M. J. (2005). Defining socially assistive robotics. In Proceedings of the 2005 IEEE 9th international conference on rehabilitation robotics (pp. 465–468). IEEE: USA
Feil-Seifer D & Matarić, M. (2009). Toward socially assistive robotics for augmenting interventions for children with autism spectrum disorders. Exp. Robot. Springer Tracts Adv. Robot. 54 (1), 201–210
Fletcher-Watson, S., & Bird, G. (2020). Autism and empathy: What are the real link? Autism, 24(1), 3–6. https://doi.org/10.1177/1362361319883506
Gándara, C. (2007). Principios y estrategias de intervención educativa en comunicación para personas con autismo: TEACCH. Revista de Logopedia, Foniatría y Audiología, 27(4), 173-186.
García, M. (2002). Trastornos de la comunicación en el autismo. Universidad de la Coruña.
Gaviria, B. (2012). Dinámica de un cuerpo rígido. Universidad de Antioquía: Colombia.
Grynszpan, O., Weiss, P. L., Pérez-Diaz, F., & Gal, E. (2014). Innovative technology-based interventions for autism spectrum disorders: A meta-analysis. Autism, 18(4), 346–361
Gibson, J. (2014). The ecological approach to visual perception: classic edition. Psychology Press, Hove
Hernández, C. & Carpio, N. (2019). Introducción a los tipos de muestro. Revista Alerta, 2(1), 1-5.
Herrero, J.F. & Lorenzo, G. (2020). An immersive virtual reality educational intervention on people with autism spectrum disorders (ASD) for the development of communication skills and problem solving. Education and Information Technologies, 25 (1) 1689–1722 https://doi.org/10.1007/s10639-019-10050-0
Hocking, J. (2022). Unity in Action: Multiplatform game development in C. Manning Publications: USA.
Horwitz, E.H., Schoevers, R.A., Greaves-Lord, K., de Bildt, A. & Hartman, C.A. (2020). Adult manifestation of milder forms of autism spectrum disorder; autistic and non-autistic psychopathology. Journal of Autism and Developmental Disorders, 50(8). 2973-2986.doi: 10.1007/s10803-020- 04403-9.
Ip, H., Lai, C., Wong, S., Tsui, J., Li, R., Lau, S. & Chan, D. (2017). Visuospatial attention in children with autism spectrum disorder: A comparison between 2-D and 3-D environments. Cogent Education, 4(1), 1-14. DOI: 10.1080/2331186X.2017.1307709
Ip, H., Wong, S., Chan, D., Byrne, J., Li, C., Yuan, V., Lau, K., & Wong, J. (2018). Enhance emotional and social adaptation skills for children with autism spectrum disorder: A virtual reality enabled approach. Computers & Education, 117(1), 1–15.
Ingersoll, B. (2010). Brief report: pilot randomized controlled trial of reciprocal imitation training for teaching elicited and spontaneous imitation to children with autism. Journal of Autism and Developmental Disoders, 40 (9), 1154-1160.
Junaidi, A., Irvan, M., Yuwono, H., Arif, D., Alamsyah, Y. & Wagis, N. (2022). Usability testing of developed virtual reality enviroment to enhance communication skills for children with low functioning autism spectrum disorder. In 2nd International Conference on Information Technology and Education (pp. 339-346). IEEE: USA
Katherine, A. (2013). Using technology to support individuals with ASD: A review of the literature. Honors projects. 203.
Kim, E. S., Berkovits, L. D., Bernier, E. P., Leyzberg, D., Shic, F., Paul, R., et al. (2013). Social robots as embedded reinforces of social behavior in children with autism. Journal of Autism and Developmental Disorders,43, 1038–1049. https://doi.org/10.1007/s10803-012-1645-2.
Kozima H, Nakagawa C & Yasuda Y. (2007). Children-robot interaction: a pilot study in autism therapy. Prog. Brain Res. 164 (1), 385–400
Lee, I., Chen, C., Wang, C., & Chung, C. (2018). Augmented Reality plus concept map technique to teach children with ASD to use social cues when meeting and greeting. Asia-Pacific Educational Researcher, 27(3), 227-243. https://doi.org/10.1007/s40299-018-0382-5
Lee, E. & Wong, K. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49–58. https://doi.org/10.1016/j.compedu.2014.07.010
Little, T., Chang, R., Gorrall, B., Waggenspack, L., Fukuda, E., Allen, P., & Noam, G. (2019). The retrospective pretest-posttest design redux: On its validity as an alternative to traditional pretest-posttest measurement. International Journal of Behavioral Development, 1–9
Lorenzo, G., Pomares, J. & Lledó (2013). Inclusion of immersive virtual learning environments and visual control systems to support the learning of students with Asperger Syndrome. Computers & Education, 62(11), 88-101. 10.1016/j.compedu.2012.10.028
Lorenzo, G., Lledó, A., Pomares, J. & Roig-Vila, R. (2016). Design and application of an immersive virtual reality system to enhance emotional skills for children with autism spectrum disorders. Computers and Education, 98 (1), 192-205. https://doi.org/10.1016/j.compedu.2016.03.018
Lorenzo, G., Lledó, A., Arráez-Vera, G. & Lorenzo-Lledó, A. (2019). The application of immersive virtual reality for students with ASD: A review between 1990–2017. Education and Information Technologies, 24(1), 127–151. https://doi.org/10.1007/s10639-018-9766-7
Luo, Y. & Du, H. (2022). Learning with desktop virtual reality: changes and interrelationship of self-efficacy, goal orientation, technology acceptance and learning behavior. Smart Learning Environments. 9, (22), 1-22.https://doi.org/10.1186/s40561-022-00203-z
Maloney, D., Freeman, G. & Wohn, D. (2020). Talking without a voice: understanding non-verbal communication in Social Virtual Reality. En Proceedings of the ACM on Human-Computer Interaction (pp.1-25). ACM Digital Library: USA.
Matsuda, S., Nunez, E., Hirokawa, M., Yamamoto, J. & Suzuki, K. (2017). Facilitating social play for children with PDDs: Effects of paired robotic devices. Frontiers in Psychology, 8, 1029. https://doi.org/10.3389/fpsyg.2017.01029.
McPartland, J.C., Webb, S.J., Keehn, B. & Dawson, G. (2011).Patterns of Visual Attention to Faces and Objects in Autism Spectrum Disorder. J Autism Dev Disord, 41 (1), 148–157. https://doi.org/10.1007/s10803-010-1033-8
Mesurado, B. (2009). Actividad estructurada vs. actividad desestructurada, realizadas en solitario vs. en compañía de otros y la experiencia óptima. Anales de Psicología, 25 (2), 308-315.
Miller, H. & Bugnariu, N. (2016). Level of immersion in virtual environments impacts the ability to assess and teach social skills in autism spectrum disorder. Cyberpsychology Behav Soc Netw 19(4), 246–256
Morales-Hidalgo, P., Roigé-Castellví, J., Hernández-Martínez, C., Voltas, N. & Canals, J. (2018). Prevalence and characteristics of Autism Spectrum Disorder among Spanish school-age children. Journal of Autism and Developmental Disorders, 48(1), 3176-3190
Nadel, J. (2002). Imitation and imitation recognition: Functional use in preverbal infants and nonverbal children with autism. In A. Meltzoff y W. Prinz (Eds.), The Imitative Mind. England: Cambridge University Press.
Naranjo, C., Ortíz, J., Álvarez,V., Sánchez, J., Tamayo, V., Acosta, F., Proaño, L. & Andaluz, V. (2017). Teaching Process for Children with Autism in Virtual Reality Environments. En ICETC 2017: Proceedings of the 2017 9th International Conference on Education Technology and Computers (pp.41-45). ACM Library: USA.
Newbutt, N., Bradley, R. & Conley, I. (2020). Using virtual reality head-mounted displays in schools with autistic children: Views, experiences, and future directions. Cyberpsychology, Behavior, and Social Networking, 23 (1), 23-33.
Ovalles, A., Luna, R., & Pérez, K. (2018). Pedagogical model with educational robotics as didactic support in primary mathematics teaching. Educación Superior, 25(1), 11–29.
Parsons, S. & Cobb, S. (2011). State-of-the-art of virtual reality technologies for children on the autism spectrum. European Journal of Special Needs Education, 26(3), 355–366. https://doi.org/10.1080/08856257.2011.593831
Parsons, S. (2016) Authenticity in virtual reality for assessment and intervention in autism: a conceptual review. Educational Research Review, 19(1), 138-157.https://doi.org/10.1016/j.edurev.2016.08.001
Patsadu, O., Muchchimwong, Y. & Narudkun, N. (2019). The development of game to develop the cognitive skill for autistic children via virtual reality. Information Technology Journal, 15 (2), 12-22.
Pressman, R. (2010). Ingeniería del software. 7oEdición. McGraw Hill.
Pruden, S. M., Hirsh-Pasek, K., Golinkoff, R. M. & Hennon, E. A. (2006). The birth of words: Ten-month-olds learn words through perceptual salience. Child Development, 77(2), 266–280. https://doi.org/10.1111/j.1467-8624.2006.00869.x
Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778.
Real Decreto 95/2022, de 1 de Febrero, por el que se establece la ordenación y enseñanzas mínimas de la Educación Infantil. Boletín Oficial del Estado, 2 de Febrero de 2022.
https://www.boe.es/eli/es/rd/2022/02/01/95/con
Real Decreto 157/2022, de 1 de Marzo, por el que se establece la ordenación y enseñanzas mínimas de la Educación Primaria. Boletín Oficial del Estado, 3 de Marzo de 2022.
https://www.boe.es/eli/es/rd/2022/03/01/157/con
Roth, D., Lugrin, J., Galakhov, D., Hoffman, A., Bente, G., Latoschik, M. & Fuhrmann, A. (2016). Avatar realism and social interaction quality in virtual reality. In 2016 IEEE Virtual Reality (pp.277-278). IEE: USA.
Sani-Bozkurt, S. & Bozkus-Genc, G. (2021). Social Robots for Joint Attention Development in Autism Spectrum Disorder: A Systematic Review. International Journal of Disability, Development and Education, 1-19. https://doi.org/10.1080/1034912X.2021.1905153
Saracho, O. (2003). Matching teachers’ and students’ cognitive styles. Early Child Development and Care, 173(2–3), 161–173.
Scassellati, B., Admoni, H. & Mataric, M. (2012). Robots for use in autism research. Annual Review of Biomedical Engineering,14, 275–294.
Schmidt, M. & Glaser, N. (2021) Investigating the usability and learner experience of a virtual reality adaptive skills intervention for adults with autism spectrum disorder. Education Tech Research Dev 69, 1665–1699 https://doi.org/10.1007/s11423-021-10005-8
Schmidt, M., Schmidt, C., Glaser, N., Beck, D., Lim, M. & Palmer, H. (2021) Evaluation of a spherical video-based virtual reality intervention designed to teach adaptive skills for adults with autism: A preliminary report. Interact Learn Environ., 29(3), 345-364. https://doi.org/10.1080/10494820.2019.1579236
Shahab, M., Taheri, A., Mokhtari, M., Shariati, A., Heidari, R., Meghdari, A. & Alemi, M. (2022). Utilizing social virtual reality robot (V2R) for music education to children with high-functioning autism. Education and Information Technologies, 27 (1), 819-843. https://doi.org/10.1007/s10639-020-10392-0
Shamsuddin S., Ismail, L., Yussof, H., Zahari, N., Bahari, S., Hashim, H. y Jaffar, A. (2011) Humanoid robot NAO: review of control and motion exploration. En: 2011 IEEE international conference on control system, computing and engineering (ICCSCE), IEEE, (pp 511–516). IEE: Malaysa.
Short, E. S., Deng, E. C., Feil-Seifer, D., & Mataric, M. J. (2017). Understanding agency in interactions between children with autism and socially assistive robots. Journal of Human-Robot Interaction,6(3), 21–47.
Speer, L. L., Cook, A. E., McMahon, W. M., & Clark, E. (2007). Face processing in children with autism: Effects of stimulus contents and type. Autism, 11(3), 265–277.
Stoner, J., Freeman, R. & Gilbert, Jr. (1996). Administración. México: Pearson Educación.
Strickland, D. (1996). A virtual reality application with autistic children. Presence: Teleoperators and Virtual Environments, 5(3), 319–329.
Strickland, D. (1997) Virtual reality for the treatment of autism. Stud Health Technol Inf, 44(1), 81–86
Tsai, W. Lee, I & Chen, C. (2021). Inclusion of third-person perspective in CAVE-like immersive 3D virtual reality role-playing games for social reciprocity training of children with an autism spectrum disorder. Univ Access Inf Soc 20 (1), 375–389 (2021). https://doi.org/10.1007/s10209-020-00724-9
Tzanavari, A.,Charalambous-Darden, N., Herakleous, K. & Poullis, C. (2015). Effectiveness of an Immersive Virtual Environment (CAVE) for teching Pedestrian Crossing to children with PDD-NOS. In 2015 IEEE 15th International Conference on Advanced Learning Technologies (pp. 423-427). IEEE: USA.
Volkmar, F. R., Paul, R. & Rogers, S. J. (2014). Handbook of autism and pervasive developmental disorders: Diagnosis, development, and brain mechanisms. New York: Wiley.
Vortmann, L. (2019). Attention-driven interaction systems for augmented reality. En ICMI '19: 2019 International Conference on Multimodal Interaction (pp.482-486). ACM. Digital Library: USA.
Wallace, S., Parsons, S., & Bailey, A. (2016). Self-reported sense of presence and responses to social stimuli by adolescents with autism spectrum disorder in a collaborative virtual reality environment. Journal of Intellectual & Developmental Disability, 42(2), 1–11. https://doi.org/10.3109/13668250.2016.1234032.
World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053.
Yin, R. (1989). Case Study Research: design and Methods, Applied social research Methods Series, Newbury Park CA: Sage.
Zabala, A. & Arnau, L. (2008). 11 Ideas clave: como aprender y enseñar competencias. Barcelona España: Ed. Graó, 4ª reimpresión.
Zapata, M. (2005). Secuenciación de contenidos y objetos de aprendizaje. RED. Revista de Educación a Distancia, número monográfico II, 1-39. https://doi.org/10.6018/red
Zhang, L., Wade, J., Bian, D., Fan, J., Swanson, A., Weitlauf, A., Warren, Z., Sarkar, N. & (2017). Cognitive load measurement in a Virtual Reality-Based driving system for autism Intervention. IEEE Transaction on affective computing, 8(2), 176-189.
Copyright (c) 2023 Distance Education Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.