Una aproximación del efecto en el aprendizaje de una lengua extranjera debida a la obtención de datos a través de exámenes en línea de idiomas
Resumen
La Inteligencia Artificial orientada a la educación (AIEd) permite adecuar y/o adaptar los itinerarios del aprendizaje de un usuario mediante procesos inductivos basados en la extracción de datos obtenidos de las evidencias formativas que genera a lo largo de su vida escolar. El Big data, o datos masivos es el almacenamiento de grandes cantidades de datos que pueden ser analizados por diversos procedimientos y que permite encontrar patrones repetitivos o formulas predictivas que pueden generar un aprendizaje sobre nosotros mismos y sobre todo en la red. En el caso de los datos masivos que se generan a través de los exámenes utilizados en el aprendizaje y certificación de conocimiento de idiomas como segunda lengua a nivel nacional encontramos que podría ser útil aplicar las metodologías de procesamiento del Big Data para conocer mejor si la información generada a través de los test pueden mejorar o crear nuevas estrategias de aprendizaje o establecer criterios formales en el diseño de las pruebas, teorías de adquisición de se segunda lengua o incluso políticas educativas. La novedad de artículo se centra en establecer directrices viables para aplicar los conceptos más genéricos del Big Data en el contexto específico de los test de evaluación de idiomas como segunda lengua y donde existe a priori una gran cantidad de información a procesar a nivel educativo. El artículo muestra algunas directrices que podrían aplicarse en los mecanismos aplicados en la extracción de datos educativos del aprendizaje de idiomas a gran escala en el entorno específico de los test de evaluación de idiomas como lengua extranjera.Descargas
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.