Photobiomodulation may increase exercise tolerance and muscle activation of forearm in healthy men: A randomized, placebo-controlled, crossover study

Authors

DOI: https://doi.org/10.6018/cpd.645681
Keywords: Photobiomodulation, Exercise tolerance, Electromyography, Health.

Supporting Agencies

  • We acknowledge support from the Open Access Publication Fund of the Federal University of Mato Grosso do Sul (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES, Brazil, Finance Code 001].

Abstract

Despite the positive effects of photobiomodulation (PBM) on muscle behavior, its effects on exercise tolerance and reactive hyperemia (RH) are poorly understood. Objective: assess the acute effects of PBM with 904 and 660, nm wavelengths irradiated at the forearm flexor muscles on exercise tolerance through the analysis of RH and muscle activation. This preliminary, double-blind, placebo-controlled crossover trial was performed with 11 healthy participants. We randomly applied PBM 904nm, PBM 660nm, and placebo at six different points at the dominant flexor muscle area. The placebo group received the stimulation at the same points with a turned-off device. RH was assessed by measuring forearm blood flow which was calculated using the peak blood flow after the 5-min occlusion with the technique of venous occlusion plethysmography. Electromyography was assessed through surface electrodes on three flexor forearm muscles. The root mean square (RMS) and median frequency (MDF) were plotted at 25, 50, 75, and 100% of the limit of tolerance (Tlim). PBM 660 irradiation significantly increased RH when compared to PBM 904 and placebo. Furthermore, PBM 660 and 904 increased RMS and reduced MDF when compared to placebo. PBM 660 irradiation was superior to 904 and placebo in the increase of RH but the application of both irradiations was similar in the activation of forearm muscles in healthy men. Trial registration: www.ensaiosclinicos.gov.br RBR-7yspdx.

Downloads

Download data is not yet available.
Metrics
Views/Downloads
  • Abstract
    337
  • (167-182) Photobiomodulat...
    146

Author Biography

Sergio Machado, Laboratory of Panic and Respiration, Institute of Psychiatry (IPUB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Neuroscience, Neurodiversity Institute, Queimados, Brazil

Sergio Machado es licenciado en Educación Física por la Universidad Estácio de Sá (2005). Máster, Doctorado y Postdoctorado en Salud Mental por el Instituto de Psiquiatría (IPUB) de la Universidad Federal de Río de Janeiro (UFRJ) en 2008, 2012 y 2013-2014. Post-doctorado en Neurofilosofía por la Universidad Federal de Uberlândia (UFU) en 2012-2013 y en Neurociencia de la Actividad Física por el Instituto Nacional de Ciencia y Tecnología Traslacional en Medicina (INCT-TM) en 2014. Doctorado en curso en Ciencias del Deporte por Universidad de Beira Interior (UBI - Portugal). Licenciando en Psicología en la Universidad Estácio de Sá, interrumpido en 2018.1. Tiene experiencia en las áreas de salud mental, psicofisiología, neuropsicología, fisiología del ejercicio clínico y neurociencia de la actividad física. Es investigador en el Laboratorio de Pánico y Respiración (UFRJ) y Profesor Permanente del Programa de Posgrado en Ciencias de la Actividad Física de la Universidad Salgado de Oliveira, coordinando el Laboratorio de Neurociencia de la Actividad Física. Sus intereses de investigación son los aspectos biológicos de la actividad física y el ejercicio físico en las dimensiones de prevención, rehabilitación y prescripción de ejercicios, en la perspectiva de la promoción de la salud y el rendimiento humano. Más específicamente, investiga los efectos agudos y crónicos del entrenamiento de fuerza, aeróbico, flexibilidad y neuromotor en la actividad cerebral, aspectos conductuales, psicofisiológicos, neuropsicológicos y de calidad de vida en sujetos sanos (niños/adolescentes, adultos y ancianos) y en pacientes con enfermedades neurológicas y trastornos psiquiátricos. Es investigador invitado de instituciones internacionales, como Universidad de Cagliari (Italia), Universidad Regensburg (Alemania) y Universidad Anahuac Mayab (México). Es editor asociado de revistas internacionales (Frontiers in Psychology, Frontiers in Psychiatry, Cuadernos de Psicologia del Deporte, The Open Sports Science Journal, CNS Neurological Disorders Drug Targets y Clinical Practice and Epidemioloy in Mental Health) y revisor de varias revistas nacionales e internacionales. Actualmente es un joven científico de la Fundación para el Apoyo a la Investigación del Estado de Río de Janeiro (FAPERJ) – Brasil.

References

Aimbire, F., Albertini, R., Pacheco, M. T. T., Castro-Faria-Neto, H. C., Leonardo, P. S. L. M., Iversen, V. V., Lopes-Martins, R. A. B., & Bjordal, J. M. (2006). Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomedicine and Laser Surgery, 24(1), 33–37. https://doi.org/10.1089/PHO.2006.24.33

Arendt-Nielsen, L., & Mills, K. R. (1988). Muscle fibre conduction velocity, mean power frequency, mean EMG voltage and force during submaximal fatiguing contractions of human quadriceps. Eur J Appl Physiol Occup Physiol, 58(1–2), 20–25. http://www.ncbi.nlm.nih.gov/pubmed/3203668

Baroni, B. M., Leal Junior, E. C., De Marchi, T., Lopes, A. L., Salvador, M., & Vaz, M. A. (n.d.). Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol, 110(4), 789–796. https://doi.org/10.1007/s00421-010-1562-z

Borsa, P. A., Larkin, K. A., & True, J. M. (2013). Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train, 48(1), 57–67. https://doi.org/10.4085/1062-6050-48.1.12

da Silva Alves, M. A., Pinfildi, C. E., Neto, L. N., Lourenco, R. P., de Azevedo, P. H., & Dourado, V. Z. (2014). Acute effects of low-level laser therapy on physiologic and electromyographic responses to the cardiopulmonary exercise testing in healthy untrained adults. Lasers Med Sci, 29(6), 1945–1951. https://doi.org/10.1007/s10103-014-1595-3

de Oliveira, A. F. S. S., da Silva, J. L., Camillo, C. A. M., Andraus, R. A. C., & Maia, L. P. (2022). Does photobiomodulation improve muscle performance and recovery? A systematic review. Revista Brasileira de Medicina Do Esporte, 29, e2021_0412. https://doi.org/10.1590/1517-8692202329012021_0412

Dompe, C., Moncrieff, L., Matys, J., Grzech-Leśniak, K., Kocherova, I., Bryja, A., Bruska, M., Dominiak, M., Mozdziak, P., Skiba, T. H. I., Shibli, J. A., Volponi, A. A., Kempisty, B., & Dyszkiewicz-Konwińska, M. (2020). Photobiomodulation-Underlying Mechanism and Clinical Applications. Journal of Clinical Medicine, 9(6), 1–17. https://doi.org/10.3390/JCM9061724

Eberstein, A., & Beattie, B. (1985). Simultaneous measurement of muscle conduction velocity and EMG power spectrum changes during fatigue. Muscle Nerve, 8(9), 768–773. https://doi.org/10.1002/mus.880080905

Ferraresi, C, de Brito Oliveira, T., de Oliveira Zafalon, L., de Menezes Reiff, R. B., Baldissera, V., de Andrade Perez, S. E., Matheucci Junior, E., & Parizotto, N. A. (2011). Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci, 26(3), 349–358. https://doi.org/10.1007/s10103-010-0855-0

Ferraresi, C, Hamblin, M. R., & Parizotto, N. A. (2012). Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med, 1(4), 267–286. https://doi.org/10.1515/plm-2012-0032

Ferraresi, Cleber, Hamblin, M. R., & Parizotto, N. A. (2012). Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics & Lasers in Medicine, 1(4), 267. https://doi.org/10.1515/PLM-2012-0032

Gorgey, A. S., Wadee, A. N., & Sobhi, N. N. (2008). The effect of low-level laser therapy on electrically induced muscle fatigue: a pilot study. Photomed Laser Surg, 26(5), 501–506. https://doi.org/10.1089/pho.2007.2161

Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 4(3), 337–361. https://doi.org/10.3934/BIOPHY.2017.3.337

Hamblin, M. R. (2018). Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochemistry and Photobiology, 94(2), 199. https://doi.org/10.1111/PHP.12864

Harriss, D. J., Macsween, A., & Atkinson, G. (2019). Ethical Standards in Sport and Exercise Science Research: 2020 Update. International Journal of Sports Medicine, 40(13), 813–817. https://doi.org/10.1055/A-1015-3123

Ihsan, F. R. (2005). Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg, 23(3), 289–294. https://doi.org/10.1089/pho.2005.23.289

Lanferdini, F. J., Kruger, R. L., Baroni, B. M., Lazzari, C., Figueiredo, P., Reischak-Oliveira, A., & Vaz, M. A. (2018). Low-level laser therapy improves the VO2 kinetics in competitive cyclists. Lasers Med Sci, 33(3), 453–460. https://doi.org/10.1007/s10103-017-2347-y

Leal-Junior, E. C., Vanin, A. A., Miranda, E. F., de Carvalho Pde, T., Dal Corso, S., & Bjordal, J. M. (2015). Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci, 30(2), 925–939. https://doi.org/10.1007/s10103-013-1465-4

Leal Junior, E. C., Lopes-Martins, R. A., de Almeida, P., Ramos, L., Iversen, V. V, & Bjordal, J. M. (2010). Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol, 108(6), 1083–1088. https://doi.org/10.1007/s00421-009-1321-1

Leal Junior, E. C., Lopes-Martins, R. A., Vanin, A. A., Baroni, B. M., Grosselli, D., De Marchi, T., Iversen, V. V, & Bjordal, J. M. (2009). Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci, 24(3), 425–431. https://doi.org/10.1007/s10103-008-0592-9

Lopes-Martins, R. A., Marcos, R. L., Leonardo, P. S., Prianti Jr., A. C., Muscara, M. N., Aimbire, F., Frigo, L., Iversen, V. V, & Bjordal, J. M. (2006). Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol (1985), 101(1), 283–288. https://doi.org/10.1152/japplphysiol.01318.2005

Luo, W. T., Lee, C. J., Tam, K. W., & Huang, T. W. (2022). Effects of Low-Level Laser Therapy on Muscular Performance and Soreness Recovery in Athletes: A Meta-analysis of Randomized Controlled Trials. Sports Health, 14(5), 687–693. https://doi.org/10.1177/19417381211039766

Manteifel, V., Bakeeva, L., & Karu, T. (1997). Ultrastructural changes in chondriome of human lymphocytes after irradiation with He-Ne laser: appearance of giant mitochondria. J Photochem Photobiol B, 38(1), 25–30. http://www.ncbi.nlm.nih.gov/pubmed/9134752

Marcolino, A. M., Hendler, K. G., Barbosa, R. I., Neves, L. M. S. das, Kuriki, H. U., & Dutra, R. C. (2022). Effect of photobiomodulation therapy (660 nm and 830 nm) on carrageenan-induced edema and pain behavior in mice. BrJP, 5(3), 206–212. https://doi.org/10.5935/2595-0118.20220035-EN

Masuda, K., Masuda, T., Sadoyama, T., Inaki, M., & Katsuta, S. (1999). Changes in surface EMG parameters during static and dynamic fatiguing contractions. J Electromyogr Kinesiol, 9(1), 39–46. http://www.ncbi.nlm.nih.gov/pubmed/10022560

Mathiassen, O. N., Buus, N. H., Olsen, H. W., Larsen, M. L., Mulvany, M. J., & Christensen, K. L. (2006). Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights. Acta Physiologica (Oxford, England), 188(2), 91–101. https://doi.org/10.1111/J.1748-1716.2006.01611.X

Miranda, E. F., Vanin, A. A., Tomazoni, S. S., Grandinetti Vdos, S., de Paiva, P. R., Machado Cdos, S., Monteiro, K. K., Casalechi, H. L., de Tarso, P., de Carvalho, C., & Leal-Junior, E. C. (2016). Using Pre-Exercise Photobiomodulation Therapy Combining Super-Pulsed Lasers and Light-Emitting Diodes to Improve Performance in Progressive Cardiopulmonary Exercise Tests. J Athl Train, 51(2), 129–135. https://doi.org/10.4085/1062-6050-51.3.10

Nampo, F. K., Cavalheri, V., Dos Santos Soares, F., de Paula Ramos, S., & Camargo, E. A. (2016). Low-level phototherapy to improve exercise capacity and muscle performance: a systematic review and meta-analysis. Lasers Med Sci, 31(9), 1957–1970. https://doi.org/10.1007/s10103-016-1977-9

Oron, U., Ilic, S., De Taboada, L., & Streeter, J. (2007). Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg, 25(3), 180–182. https://doi.org/10.1089/pho.2007.2064

Smith, A. E., Walter, A. A., Herda, T. J., Ryan, E. D., Moon, J. R., Cramer, J. T., & Stout, J. R. (2007). Effects of creatine loading on electromyographic fatigue threshold during cycle ergometry in college-aged women. J Int Soc Sports Nutr, 4, 20. https://doi.org/10.1186/1550-2783-4-20

Stout, J. R., Sue Graves, B., Cramer, J. T., Goldstein, E. R., Costa, P. B., Smith, A. E., & Walter, A. A. (2007). Effects of creatine supplementation on the onset of neuromuscular fatigue threshold and muscle strength in elderly men and women (64 - 86 years). J Nutr Health Aging, 11(6), 459–464. http://www.ncbi.nlm.nih.gov/pubmed/17985060

Toma, R. L., Oliveira, M. X., Renno, A. C. M., & Laakso, E. L. (2018). Photobiomodulation (PBM) therapy at 904 nm mitigates effects of exercise-induced skeletal muscle fatigue in young women. Lasers in Medical Science, 33(6), 1197–1205. https://doi.org/10.1007/S10103-018-2454-4

Vassao, P. G., Toma, R. L., Antunes, H. K., Tucci, H. T., & Renno, A. C. (2016). Effects of photobiomodulation on the fatigue level in elderly women: an isokinetic dynamometry evaluation. Lasers Med Sci, 31(2), 275–282. https://doi.org/10.1007/s10103-015-1858-7

World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. (2004). Journal International de Bioethique = International Journal of Bioethics, 15(1), 124–129.

Published
01-05-2025
How to Cite
Zago, J., Santos, F. V., Vieira, P. J. C., Rondinel, T., Diefenthaeler, F., Machado, S., … Chiappa, G. R. (2025). Photobiomodulation may increase exercise tolerance and muscle activation of forearm in healthy men: A randomized, placebo-controlled, crossover study. Sport Psychology Notebooks, 25(2), 167–182. https://doi.org/10.6018/cpd.645681
Issue
Section
Ciencias del Deporte

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.