Estimulación transcraneal de corriente continua anódica como potencial recurso ergogénico para fuerza muscular y percepción de esfuerzo:

una revisión crítica

Resumen

En las últimas décadas, diversos estudios vienen investigando la dosis-respuesta ideal en cuanto a la frecuencia, intensidad y volumen de entrenamiento para alcanzar el aumento de fuerza muscular, sea en atletas y no atletas. La dosis-respuesta es fundamental para la prescripción de entrenamiento, ya que su manipulación equivocada puede llevar a un alto de riesgo de desarrollo de lesiones por esfuerzo repetitivo, así como para el no desarrollo de la fuerza esperada. Ya en sujetos con nivel avanzado de entrenamiento de fuerza es extremadamente importante aumentar su intensidad y volumen de entrenamiento. En este sentido, con los avances encontrados en el área de entrenamiento de fuerza y ​​la necesidad de nuevas estrategias para optimizar las ganancias de fuerza, un nuevo método viene ganando fuerza en la literatura, la estimulación transcraneal por corriente continua (ETCC). Por lo tanto, el objetivo del presente estudio es analizar de forma crítica los efectos de la ETCC como potencial recurso ergogénico al desempeño de fuerza muscular y percepción de esfuerzo. Por lo tanto, se realizó una búsqueda en las bases de datos Pubmed/Medline, ISI Web of Knowledge y Scielo, en el idioma inglés y con las palabras clave: fuerza muscular, resistencia muscular, estimulación transcraneal de corriente continua, ETCC. Comparamos el efecto de ETCC anódica (ETCC-a) a una condición sham/control sobre los resultados de la fuerza muscular. Ningún estudio menciona efectos secundarios negativos de la intervención. Los datos muestran diferencias entre los estudios que investigan la fuerza muscular y los estudios de evaluación de resistencia, en lo que se refiere al uso exitoso de la ETCC. Los estudios que investigan la eficiencia de la ETCC en la mejora de la fuerza muscular demuestran efectos positivos de la ETCC-a en el 66,7% de los parámetros probados. La mayoría de los datos muestran consistentemente influencia de la ETCC-a en la fuerza muscular, pero no en el rendimiento de resistencia.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdelmoula, A., Baudry, S., & Duchateau, J. (2016). Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Neuroscience, 322, 94–103.
Angius, L., Pageaux, B., Hopker, J., Marcora, S. M., & Mauger, A. R. (2016). Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience, 339, 363–375.
Angius, L., Mauger, A. R., Hopker, J., Pascual-Leone, A., Santarnecchi, E., & Marcora, S. M. (2018). Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimulation, 11, 1, 108-117.
Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. Journal of Physiology, 591, 7, 1987-2000.
Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., ... & Brunoni, A. R. (2016). Safety of transcranial direct current stimulation: evidence based update 2016. Brain stimulation, 9(5), 641-661.
Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., ... & Ferrucci, R. (2012). Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain stimulation, 5(3), 175-195.
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365.
Ciccone, A. B., Deckert, J. A., Schlabs, C. R., Tilden, M. J., Herda, T. J., Gallagher, P. M., & Weir, J. P. (2018). Transcranial direct current stimulation of the temporal lobe does not affect high intensity work capacity. Journal Strength Conditioning Research, In press.
Cogiamanian, F., Marceglia S., Ardolino, G., Barbieri, S. & Priori, A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. European Journal of Neuroscience, 26(1), 242-249.
De Morree, H. M., Klein, C., & Marcora, S. M. (2012). Perception of effort reflects central motor command during movement execution. Psychophysiology, 49(9), 1242-1253.
Davis, N. J. (2013). Neurodoping: brain stimulation as a performance-enhancing measure. Sports Medicine, 43(8), 649-653.
Edwards, D. J., Cortes, M., Wortman-Jutt, S., Putrino, D., Bikson, M., Thickbroom, G., & Pascual-Leone, A. (2017). Transcranial direct current stimulation and sports performance. Frontiers in human neuroscience, 11, 243.
Farah, M. J. (2015). The unknowns of cognitive enhancement. Science, 350(6259), 379-380.Flood, A., Waddington, G., Keegan, R.J., Thompson, K.G., & Cathcart, S. (2017). The effects of elevated pain inhibition on endurance exercise performance. PeerJ, 5, e3028.
Frazer, A. K., Williams, J., Spittle, M., & Kidgell, D. J. (2017). Cross-education of muscular strength is facilitated by homeostatic plasticity. European Journal of Applied Physiology, 117, 665–677.
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiology Review, 81, 1725–89.
Hazime, F. A., da Cunha, R. A., Soliaman, R. R., Romancini, A. C. B., Pochini, A. D. C., Ejnisman, B., & Baptista, A. F., (2017). Anodal transcranial direct current stimulation (TDCS) increases isometric strength of shoulder rotators muscles in handball players. International Journal Sports Physical Therapy. 12, 402–407.
Hendy, A. M., & Kidgell, D. J. (2014). Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle. Experimental Brain Research, 232, 3243–3252.
Kan, B., Dundas, J. E., & Nosaka, K., (2013). Effect of transcranial direct current stimulation on elbow flexor maximal voluntary isometric strength and endurance. Applied Physiology Nutrition and Metabolic, 38, 734–739.
Lattari, E., Andrade, M. L., Filho, A. S., Moura, A. M., Neto, G. M., Silva, J. G., Rocha, N. B., Yuan, T. F., Arias-Carrión, O., & Machado, S. (2016). Can transcranial direct current stimulation improve the resistance strength and decrease the rating perceived scale in recreational weight-training experience? Journal Strength Conditioning Research, 30, 3381–3387.
Lattari, E., Campos, C., Lamego, M. K., Passos de Souza, S. L., Neto, G. M., Rocha, N. B., Jose de Oliveira, A., Carpenter, S., & Machado, S. (2017). Can transcranial direct current stimulation improve muscle power in individuals with advanced resistance training experience? Journal of Strength and Conditioning Resesearch, in press.
Lattari, E., Rosa Filho, B. J., Fonseca Junior, S. J., Murillo-Rodriguez, E., Rocha, N., Machado, S., & Maranhão Neto, G. A. (2018). Effects on volume load and ratings of perceived exertion in individuals advanced weight-training after transcranial direct current stimulation. Journal Strength Conditioning Research, in press.
Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125, 10, 2238-47.
López-Alonso, V., Fernández-Del-Olmo, M., Costantini, A., Gonzalez-Henriquez, J. J., Cheeran, B. (2015). Intra-individual variability in the response to anodal transcranial direct current stimulation. Clinical Neurophysiology, 126, 2342–2347.
Madhavan, S., Sriraman, A., Freels, S. (2016). Reliability and variability of tDCS induced changes in the lower limb motor cortex. Brain Science, 6, 26.
Mauger, A. R. (2013). Fatigue is a pain-the use of novel neurophysiological techniques to understand the fatigue-pain relationship. Frontier in Physiology, 4, 1–4.
Miranda, P. C., Mekonnen, A., Salvador, R., Ruffini, G. (2013). The electric field in the cortex during transcranial current stimulation. Neuroimage, 70, 48–58.
Moliadze, V., Antal, A., Paulus, W. (2010). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology, 121, 12, 2165-2171.
Montenegro, R. A., Farinatti, P. T. V., Fontes, E. B., Soares, P. P. S., Cunha, F. A., Gurgel, J. L., et al. (2011). Transcranial direct current stimulation influences the cardiac autonomic nervous control. Neuroscience Letters, 497, 32–6.
Montenegro, R., Okano, A., Gurgel, J., Porto, F., Cunha, F., Massaferri, R., & Farinatti, P. (2015). Motor cortex tDCS does not improve strength performance in healthy subjects. Motriz: Revista Educação Física, 21, 185–193.
Napadow, V., Dhond, R., Conti, G., Makris, N., Brown, E. N., Barbieri, R. (2008). Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage, 42, 169–77.
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3), 633-639.
Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.
Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., & Pascual-Leonel, A. (2008). Transcranial direct current stimulation. Journal of Physiology, 1(3), 206-223.
Nitsche, M. A., Fricke, M., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., Henning, S., Tergau, F., & Paulus, W. (2003a). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. Journal of Physiology, 553(1), 293-301.
Nitsche, M. A., Liebetanz, D., Antal, A., Lang, N., Tergau, F., & Paulus, W. (2003b). Modulation of cortical excitability by weak direct current stimulation- technical, safety and functional aspects. Supplements to Clinical Neurophysiology, 56, 255-276.
Nitsche, M. A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, N., ... & Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of neurophysiology, 97(4), 3109-3117.
Oppenheimer, S. M., Gelb, A., Girvin, J. P., Hachinski, V. C. (1992). Cardiovascular effects of human insular cortex stimulation. Neurology, 42, 1727–32.
Pageaux, B. (2014). The Psychobiological Model of Endurance Performance: An Effort-Based Decision-Making Theory to Explain Self-Paced Endurance Performance. Sport Medicine, 1–3.
Peterson, M. D., Rhea, M. R., & Alvar, B. A. (2005). Applications of the dose-response for muscular strength development: areview of meta-analytic efficacy and reliability for designing training prescription. The Journal of Strength & Conditioning Research, 19(4), 950-958.
Peterson, M. D., Rhea, M. R., & Alvar, B. A. (2004). Maximizing strength development in athletes: a meta-analysis to determine the dose-response relationship. The Journal of Strength & Conditioning Research, 18(2), 377-382.
Radel, R., Tempest, G., Denis, G., Besson, P., & Zory, R. (2017). Extending the limits of force endurance: stimulation of the motor or the frontal cortex? Cortex, 97, 96–108.
Reardon, S. (2016). ‘Brain doping’may improve athletes’ performance. Nature News, 531(7594), 283.
Robertson, C. V., & Marino, F. E. (2016). A role for the prefrontal cortex in exercise tolerance and termination. Journal Applied Physiology, 120, 464–6.
Thomas, R., & Stephane, P. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European journal of applied physiology, 102(2), 153-163.
Rooks, C. R., Thom, N. J., McCully, K. K., & Dishman, R. K. (2010). Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Progress in neurobiology, 92(2), 134-150.
Sales, M. M., De Sousa, C. V., Browne, R. A. V., Fontes, E. B., Olher, R. R .V., Ernesto, C., & Simões H. G. (2016). Transcranial direct current stimulation improves muscle isokinetic performance of young trained individuals. Medicina Dello Sport, 69, 1–10.
Santarnecchi, E., & Pascual-Leone, A. (2017, September). The Illusion of the Perfect Brain Enhancer. In Cerebrum: the Dana forum on brain science (Vol. 2017). Dana Foundation.
Sidhu, S. K., Bentley, D. J., & Carroll, T. J. (2009). Locomotor exercise induces longlasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. Journal of Applied Physiology, 106(2), 556-56.
Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49(5), 800-804.
Stepniewska I., Preuss T. M., & Kaas J. H. (2004). Thalamic connections of the primary motor cortex (M1) of owl monkeys. Journal of Comparative Neurology, 349, 558–82.
Tanaka, S., Takashi, H., Manabu., H., & Katsumi, W. (2009). Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Experimental Brain Research, 196(3), 459-465.
Tanaka, S., Hanakawa, T., Honda, M., & Watanabe, K. (2009). Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Experimental Brain Research, 196, 459–465.
Taylor J. L., & Gandevia S. C. (2008). A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. Journal Applied Physiology, 104, 542–50.
Taylor J. L., Amann M., Duchateau J., Meeusen R., & Rice C .L. (2016). Neural contributions 1 to muscle fatigue: from the brain to the muscle and back. Medicine and Science in Sports and Exercise, 48, 2294–306.
Van, J. C., Marcora, S., De, K. P., Bailey, S., Meeusen, R., & Roelands, B. (2017). The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sports Medicine (Auckland, NZ), 47(8), 1569-1588.
Vargas, V. Z., Baptista, A. F., Pereira, G. O. C., Pochini, A. C., Ejnisman, B., Santos, M. B., João, S. M. A., Hazime, F. A. (2018). Modulation of isometric quadriceps strength in soccer players with transcranial direct current stimulation: a crossover study. Journal Strength Conditioning Research, 32(5), 1336–1341.
Vaseghi B., Zoghi M., & Jaberzadeh S. (2014). Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clinical Neurophysiology, 125, 1847–58.
Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., & Pascual-Leone, A. (2007). Transcranial direct current stimulation: a computer-based human model study. Neuroimage, 35(3), 1113-1124.
Wagner, T., Valero-Cabre, A., & Pascual-Leone, A. (2007). Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng., 9, 527-565.
Weingarten, E., Chen, Q., McAdams, M., Yi, J., Hepler, J., & Albarracín, D. (2016). From primed concepts to action: A meta-analysis of the behavioral effects of incidentally presented words. Psychological Bulletin, 142(5), 472.
Wexler, A. (2016). The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals. Journal of medical ethics, 42(4), 211-215.
Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain stimulation, 7(3), 468-475.
Williams, P. S., Hoffman, R. L., & Clark, B. C. (2013). Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction. PLoS One, 8, 81418.
Wurzman, R., Hamilton, R. H., Pascual‐Leone, A., & Fox, M. D. (2016). An open letter concerning do‐it‐yourself users of transcranial direct current stimulation. Annals of neurology, 80(1), 1-4.
Zénon, A., Sidibé, M., & Olivier, E. (2015). Disrupting the supplementary motor area makes physical effort appear less effortful. Journal of Neuroscience, 35(23), 8737-8744.
Publicado
09-07-2019
Sección
Psicología del Deporte