Estimulación transcraneal de corriente continua anódica como potencial recurso ergogénico para fuerza muscular y percepción de esfuerzo:
una revisión crítica
Abstract
In the last decades, several studies have been investigating the ideal dose-response as to the frequency, intensity and volume of training to achieve the increase of muscular strength, in both athletes and non-athletes. Dose-response is essential for the prescription of training, since its mismanagement may lead to a high risk of developing repetitive strain injuries, as well as to the failure to develop the expected strength. In subjects with advanced level of strength training, it is extremely important to increase their intensity and training volume. In this sense, with the advances found in the area of strength training and the need for new strategies to optimize force gains, a new method has been gaining strength in the literature, the transcranial direct current stimulation (tDCS). Therefore, the objective of the present study is to critically analyze the effects of tDCS as a potential ergogenic resource for the performance of muscular strength and perceived exertion. Thus, a search was performed on the Pubmed/Medline, ISI Web of Knowledge and Scielo databases in the English language and with the key words: muscular strength, muscular endurance, transcranial direct current stimulation, tDCS. We compared the effect of anodic tDCS (a-tDCS) to a sham/control condition on muscle strength results. No study mentions the negative side effects of the intervention. The data show differences between studies investigating muscle strength and endurance assessment studies with regard to the successful use of tDCS. Studies investigating the efficiency of tDCS in improving muscle strength demonstrate positive effects of a-tDCS in 66.7% of the parameters tested. Most data consistently show a-tDCS influence on muscle strength, but not on resistance performance.
Downloads
References
Abdelmoula, A., Baudry, S., & Duchateau, J. (2016). Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Neuroscience, 322, 94–103.
Angius, L., Pageaux, B., Hopker, J., Marcora, S. M., & Mauger, A. R. (2016). Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience, 339, 363–375.
Angius, L., Mauger, A. R., Hopker, J., Pascual-Leone, A., Santarnecchi, E., & Marcora, S. M. (2018). Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimulation, 11, 1, 108-117.
Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. Journal of Physiology, 591, 7, 1987-2000.
Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., ... & Brunoni, A. R. (2016). Safety of transcranial direct current stimulation: evidence based update 2016. Brain stimulation, 9(5), 641-661.
Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., ... & Ferrucci, R. (2012). Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain stimulation, 5(3), 175-195.
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365.
Ciccone, A. B., Deckert, J. A., Schlabs, C. R., Tilden, M. J., Herda, T. J., Gallagher, P. M., & Weir, J. P. (2018). Transcranial direct current stimulation of the temporal lobe does not affect high intensity work capacity. Journal Strength Conditioning Research, In press.
Cogiamanian, F., Marceglia S., Ardolino, G., Barbieri, S. & Priori, A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. European Journal of Neuroscience, 26(1), 242-249.
De Morree, H. M., Klein, C., & Marcora, S. M. (2012). Perception of effort reflects central motor command during movement execution. Psychophysiology, 49(9), 1242-1253.
Davis, N. J. (2013). Neurodoping: brain stimulation as a performance-enhancing measure. Sports Medicine, 43(8), 649-653.
Edwards, D. J., Cortes, M., Wortman-Jutt, S., Putrino, D., Bikson, M., Thickbroom, G., & Pascual-Leone, A. (2017). Transcranial direct current stimulation and sports performance. Frontiers in human neuroscience, 11, 243.
Farah, M. J. (2015). The unknowns of cognitive enhancement. Science, 350(6259), 379-380.Flood, A., Waddington, G., Keegan, R.J., Thompson, K.G., & Cathcart, S. (2017). The effects of elevated pain inhibition on endurance exercise performance. PeerJ, 5, e3028.
Frazer, A. K., Williams, J., Spittle, M., & Kidgell, D. J. (2017). Cross-education of muscular strength is facilitated by homeostatic plasticity. European Journal of Applied Physiology, 117, 665–677.
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiology Review, 81, 1725–89.
Hazime, F. A., da Cunha, R. A., Soliaman, R. R., Romancini, A. C. B., Pochini, A. D. C., Ejnisman, B., & Baptista, A. F., (2017). Anodal transcranial direct current stimulation (TDCS) increases isometric strength of shoulder rotators muscles in handball players. International Journal Sports Physical Therapy. 12, 402–407.
Hendy, A. M., & Kidgell, D. J. (2014). Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle. Experimental Brain Research, 232, 3243–3252.
Kan, B., Dundas, J. E., & Nosaka, K., (2013). Effect of transcranial direct current stimulation on elbow flexor maximal voluntary isometric strength and endurance. Applied Physiology Nutrition and Metabolic, 38, 734–739.
Lattari, E., Andrade, M. L., Filho, A. S., Moura, A. M., Neto, G. M., Silva, J. G., Rocha, N. B., Yuan, T. F., Arias-Carrión, O., & Machado, S. (2016). Can transcranial direct current stimulation improve the resistance strength and decrease the rating perceived scale in recreational weight-training experience? Journal Strength Conditioning Research, 30, 3381–3387.
Lattari, E., Campos, C., Lamego, M. K., Passos de Souza, S. L., Neto, G. M., Rocha, N. B., Jose de Oliveira, A., Carpenter, S., & Machado, S. (2017). Can transcranial direct current stimulation improve muscle power in individuals with advanced resistance training experience? Journal of Strength and Conditioning Resesearch, in press.
Lattari, E., Rosa Filho, B. J., Fonseca Junior, S. J., Murillo-Rodriguez, E., Rocha, N., Machado, S., & Maranhão Neto, G. A. (2018). Effects on volume load and ratings of perceived exertion in individuals advanced weight-training after transcranial direct current stimulation. Journal Strength Conditioning Research, in press.
Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125, 10, 2238-47.
López-Alonso, V., Fernández-Del-Olmo, M., Costantini, A., Gonzalez-Henriquez, J. J., Cheeran, B. (2015). Intra-individual variability in the response to anodal transcranial direct current stimulation. Clinical Neurophysiology, 126, 2342–2347.
Madhavan, S., Sriraman, A., Freels, S. (2016). Reliability and variability of tDCS induced changes in the lower limb motor cortex. Brain Science, 6, 26.
Mauger, A. R. (2013). Fatigue is a pain-the use of novel neurophysiological techniques to understand the fatigue-pain relationship. Frontier in Physiology, 4, 1–4.
Miranda, P. C., Mekonnen, A., Salvador, R., Ruffini, G. (2013). The electric field in the cortex during transcranial current stimulation. Neuroimage, 70, 48–58.
Moliadze, V., Antal, A., Paulus, W. (2010). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology, 121, 12, 2165-2171.
Montenegro, R. A., Farinatti, P. T. V., Fontes, E. B., Soares, P. P. S., Cunha, F. A., Gurgel, J. L., et al. (2011). Transcranial direct current stimulation influences the cardiac autonomic nervous control. Neuroscience Letters, 497, 32–6.
Montenegro, R., Okano, A., Gurgel, J., Porto, F., Cunha, F., Massaferri, R., & Farinatti, P. (2015). Motor cortex tDCS does not improve strength performance in healthy subjects. Motriz: Revista Educação Física, 21, 185–193.
Napadow, V., Dhond, R., Conti, G., Makris, N., Brown, E. N., Barbieri, R. (2008). Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage, 42, 169–77.
Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3), 633-639.
Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.
Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P. S., Fregni, F., & Pascual-Leonel, A. (2008). Transcranial direct current stimulation. Journal of Physiology, 1(3), 206-223.
Nitsche, M. A., Fricke, M., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., Henning, S., Tergau, F., & Paulus, W. (2003a). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. Journal of Physiology, 553(1), 293-301.
Nitsche, M. A., Liebetanz, D., Antal, A., Lang, N., Tergau, F., & Paulus, W. (2003b). Modulation of cortical excitability by weak direct current stimulation- technical, safety and functional aspects. Supplements to Clinical Neurophysiology, 56, 255-276.
Nitsche, M. A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, N., ... & Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of neurophysiology, 97(4), 3109-3117.
Oppenheimer, S. M., Gelb, A., Girvin, J. P., Hachinski, V. C. (1992). Cardiovascular effects of human insular cortex stimulation. Neurology, 42, 1727–32.
Pageaux, B. (2014). The Psychobiological Model of Endurance Performance: An Effort-Based Decision-Making Theory to Explain Self-Paced Endurance Performance. Sport Medicine, 1–3.
Peterson, M. D., Rhea, M. R., & Alvar, B. A. (2005). Applications of the dose-response for muscular strength development: areview of meta-analytic efficacy and reliability for designing training prescription. The Journal of Strength & Conditioning Research, 19(4), 950-958.
Peterson, M. D., Rhea, M. R., & Alvar, B. A. (2004). Maximizing strength development in athletes: a meta-analysis to determine the dose-response relationship. The Journal of Strength & Conditioning Research, 18(2), 377-382.
Radel, R., Tempest, G., Denis, G., Besson, P., & Zory, R. (2017). Extending the limits of force endurance: stimulation of the motor or the frontal cortex? Cortex, 97, 96–108.
Reardon, S. (2016). ‘Brain doping’may improve athletes’ performance. Nature News, 531(7594), 283.
Robertson, C. V., & Marino, F. E. (2016). A role for the prefrontal cortex in exercise tolerance and termination. Journal Applied Physiology, 120, 464–6.
Thomas, R., & Stephane, P. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European journal of applied physiology, 102(2), 153-163.
Rooks, C. R., Thom, N. J., McCully, K. K., & Dishman, R. K. (2010). Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Progress in neurobiology, 92(2), 134-150.
Sales, M. M., De Sousa, C. V., Browne, R. A. V., Fontes, E. B., Olher, R. R .V., Ernesto, C., & Simões H. G. (2016). Transcranial direct current stimulation improves muscle isokinetic performance of young trained individuals. Medicina Dello Sport, 69, 1–10.
Santarnecchi, E., & Pascual-Leone, A. (2017, September). The Illusion of the Perfect Brain Enhancer. In Cerebrum: the Dana forum on brain science (Vol. 2017). Dana Foundation.
Sidhu, S. K., Bentley, D. J., & Carroll, T. J. (2009). Locomotor exercise induces longlasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. Journal of Applied Physiology, 106(2), 556-56.
Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49(5), 800-804.
Stepniewska I., Preuss T. M., & Kaas J. H. (2004). Thalamic connections of the primary motor cortex (M1) of owl monkeys. Journal of Comparative Neurology, 349, 558–82.
Tanaka, S., Takashi, H., Manabu., H., & Katsumi, W. (2009). Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Experimental Brain Research, 196(3), 459-465.
Tanaka, S., Hanakawa, T., Honda, M., & Watanabe, K. (2009). Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Experimental Brain Research, 196, 459–465.
Taylor J. L., & Gandevia S. C. (2008). A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. Journal Applied Physiology, 104, 542–50.
Taylor J. L., Amann M., Duchateau J., Meeusen R., & Rice C .L. (2016). Neural contributions 1 to muscle fatigue: from the brain to the muscle and back. Medicine and Science in Sports and Exercise, 48, 2294–306.
Van, J. C., Marcora, S., De, K. P., Bailey, S., Meeusen, R., & Roelands, B. (2017). The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sports Medicine (Auckland, NZ), 47(8), 1569-1588.
Vargas, V. Z., Baptista, A. F., Pereira, G. O. C., Pochini, A. C., Ejnisman, B., Santos, M. B., João, S. M. A., Hazime, F. A. (2018). Modulation of isometric quadriceps strength in soccer players with transcranial direct current stimulation: a crossover study. Journal Strength Conditioning Research, 32(5), 1336–1341.
Vaseghi B., Zoghi M., & Jaberzadeh S. (2014). Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clinical Neurophysiology, 125, 1847–58.
Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., & Pascual-Leone, A. (2007). Transcranial direct current stimulation: a computer-based human model study. Neuroimage, 35(3), 1113-1124.
Wagner, T., Valero-Cabre, A., & Pascual-Leone, A. (2007). Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng., 9, 527-565.
Weingarten, E., Chen, Q., McAdams, M., Yi, J., Hepler, J., & Albarracín, D. (2016). From primed concepts to action: A meta-analysis of the behavioral effects of incidentally presented words. Psychological Bulletin, 142(5), 472.
Wexler, A. (2016). The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals. Journal of medical ethics, 42(4), 211-215.
Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain stimulation, 7(3), 468-475.
Williams, P. S., Hoffman, R. L., & Clark, B. C. (2013). Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction. PLoS One, 8, 81418.
Wurzman, R., Hamilton, R. H., Pascual‐Leone, A., & Fox, M. D. (2016). An open letter concerning do‐it‐yourself users of transcranial direct current stimulation. Annals of neurology, 80(1), 1-4.
Zénon, A., Sidibé, M., & Olivier, E. (2015). Disrupting the supplementary motor area makes physical effort appear less effortful. Journal of Neuroscience, 35(23), 8737-8744.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.