AI and wearable sensors in Higher Education to investigate Public Speaking Skills
Abstract
In most professional fields, being able to effectively communicate to an audience is considered an essential skill for professional advancement. However, the literature shows that anxiety disorders are among the most common mental disorders encountered by public speakers and that public speaking anxiety can negatively impact on the learning experience of undergraduate students. The present study involves university students from two different contexts and countries and examines their public speaking anxiety by cross-referencing data on cognitive self-perceptions, physiological reactions (heart rate), and behavioural aspects (facial expressions and body movements). It also explores the potential of wearable devices and artificial intelligence in data collection and analysis to identify different student profiles according to their levels of stress and public speaking anxiety. Despite various limitations, the cross-analysis showed good consistency and revealed interesting differences between the two samples, including stress-related clusters and emotional states. The data obtained encourage further research into the variables associated with public speaking and oratory skills. In addition, future developments of this study aim to further explore the potential contribution of these tools in assisting teachers in designing effective personalised training, as well as sharing and discussing data with students to promote awareness of their weaknesses and strengths.
Downloads
-
Abstract2
-
PDF0
References
Alshabandar, R., Hussain, A., Keight, R., Laws, A. & Baker, T. (2018) The application of Gaussian mixture models for the identification of at-risk learners in massive open online courses. In 2018 IEEE Congress on Evolutionary Computation (CEC), 1–8. https://doi.org/10.1109/CEC.2018.8477770
Andreassi, J.L. (2007) Psychophysiology: Human Behavior and Physiological Response (5th ed.). Erlbaum, Mahwah, NJ.
Appelhans, B.M. & Luecken, L.J. (2006) Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10(3),229–240. https://doi.org/10.1037/1089-2680.10.3.229
Bartholomay, E.M. & Houlihan, D.D. (2016) Public Speaking Anxiety Scale: Preliminary psychometric data and scale validation. Personality and Individual Differences, 2016, 94, 211–215. https://doi.org/10.1016/j.paid.2016.01.026
Bodie, G.D. (2010) A Racing Heart, Rattling Knees, and Ruminative Thoughts: Defining, Explaining, and Treating Public Speaking Anxiety. Communication Education, 59(1), 70–105. https://doi.org/10.1080/03634520903443849
Brezočnik, L., Nalli, G., De Leone, R., Val, S., Podgorelec, V. & Karakatič, S. (2023) Machine Learning Model for Student Drop-Out Prediction Based on Student Engagement. In I. Karabegovic, A. Kovačević and S. Mandzuka (Eds.), New Technologies, Development and Applications, Springer Nature Switzerland, 486–496.
Bruggemann, T., Andresen, D., Voller, H. & Schroder, R. (1991) Heart rate variability from Holter monitoring in a normal population. In 1991 Proceedings Computers in Cardiology, 337–340. https://doi.org/10.1109/CIC.1991.169114
Camacho, V.L., De la Guía, E., Orozco-Barbosa, L. & Olivares, T. (2020) WIoTED: an IoT-based portable platform to support the learning process using wearable devices. Electronics, 9(12), 2071. https://doi.org/10.3390/electronics9122071
Cherner, T., Fegely, A., Hou,C. & Halpin, P. (2023) AI-powered presentation platforms for improving public speaking skills: Takeaways and suggestions for improvement. Journal of Interactive Learning Research, 34(2), 339–367.
Comaniciu, D. & Meer, P. (2002) Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619. https://doi.org/10.1109/34.1000236
De Amorim, R.C. & Hennig, C. (2015) Recovering the number of clusters in data sets with noise features using feature rescaling factors. Information Sciences, 2015, 324, 126–145. https://doi.org/10.1016/j.ins.2015.06.039
Egloff, B., Wilhelm, F.H., Neubauer, D.H., Mauss, I.B. & Gross, J.J. (2006) Implicit anxiety measure predicts cardiovascular reactivity to an evaluated speaking task. Emotion, 2(1), 3–11. https://doi.org/10.1037/1528-3542.2.1.3
El Shazly, R. (2020) Effects of artificial intelligence on English speaking anxiety and speaking performance: A case study. Expert Systems, 38(3). https://doi.org/10.1111/exsy.12667
Elia, D.R. & Wahyuningsih, S. (2024) The Use of Artificial Intelligence in Assessing and Improving Public Speaking Skills: EFL Students’ Voices in Indonesian Secondary school. Conference on English Language Teaching, 4(1), 440–454.
Elwess, N.L. & Vogt, F.D. (2005) Heart Rate and Stress in a College Setting. Bioscene: The Journal of College Biology Teaching, 31, 20–23.
Fekry, A., Dafoulas, G. & Ismail, M. (2019) Automatic detection for students behaviors in a group presentation. In 2019 14th International Conference on Computer Engineering and Systems (ICCES), IEEE, 2019, 11–15. https://doi.org/10.1109/ICCES48960.2019
Ferreira Marinho, A.C, Mesquita de Medeiros, A., Côrtes Gama, A.C. & Caldas Teixeira, L. (2017) Fear of Public Speaking: Perception of College Students and Correlates. Journal of Voice,31(1), 7–11. https://doi.org/10.1016/j.jvoice.2015.12.012
Grieve, R., Woodley, J., Hunt, S.E. & McKay, A. (2021) Student fears of oral presentations and public speaking in higher education: A qualitative survey. Journal of Further and Higher Education, 2021, 45(9), 1281–1293. https://doi.org/10.1080/0309877X.2021.1948509
Hackeling, G. (2017) Mastering Machine Learning with Scikit-learn. Packt Publishing Ltd, Birmingham, UK,
Haunts, S. (2022) Powerful Presentation. Selling Your Story on Stage or in the Boardroom. Apress.
Huang, F., Wen, W. & Liu, G. (2016) Facial expression recognition of public speaking anxiety. In 2016 9th International Symposium on Computational Intelligence and Design (ISCID), 1, 237–241. https://doi.org/10.1109/ISCID.2016.1061
Kirkwood, C.K. & Melton, S.T. (2002) Anxiety disorders. In J.T. DiPiro et al. (Eds.), Pharmacotherapy: A Pathophysiologic Approach (5th ed.), McGraw-Hill.
Khopkar, A., & Adholiya, A. (2021) Facial expression recognition using CNN with Keras. Bioscience Biotechnology Research Communications, 14(5), 47–50. https://doi.org/10.21786/bbrc/14.5/10
Krashen, S.D. (1982) Principles and Practice in Second Language Acquisition. Pergamon Press.
Lang, P.J. (1968) Fear reduction and fear behavior: Problems in treating a construct. In J.M. Shlien (Ed.), Research in Psychotherapy, 3, 90–102.https://doi.org/10.1037/10546-004
Lucas, S.E. (2011) The Art of Public Speaking (11th ed.). McGraw-Hill.
Mandal, S., Ghosh, B. & Naskar, R. (2023) A Photoplethysmography (PPG) Sensor based Stress Level Monitoring System for Undergraduate Students of Technical Education. In 2023 IEEE 20th India Council International Conference (INDICON), 197–202. https://doi.org/10.1109/INDICON59947.2023.10440913
Mason, J.W., Ramseth, D.J., Chanter, D.O., Moon, T.E. Goodman, D.B. & Mendzelevski, B. (2007) Electrocardiographic reference ranges derived from 79,743 ambulatory subjects. Journal of Electrocardiology, 40(3), 228–234. https://doi.org/10.1016/j.jelectrocard.2006.09.003
Mehrabian, A. (2017) Nonverbal Communication. Routledge, New York, NY, USA.
Mulac, A. & Sherman, A.R. (1975) Conceptual foundations of the behavioral assessment of speech anxiety. Western Journal of Communication, 39(4), 276–280.
Nalli, G, Dafoulas, G., Tsiakara, A., Langari, B., Mistry, K. & Aria, F.T. (2023) Hybrid Educational Environments–Using IoT to detect emotion changes during student interactions. Interaction Design & Architecture(s) Journal, 58, 39–52. https://doi.org/10.55612/s-5002-058-001
Nash, G., Crimmins, G. & Oprescu, F. (2016) If first-year students are afraid of public speaking assessments what can teachers do to alleviate such anxiety? Assessment & Evaluation in Higher Education, 41(4), 586–600. https://doi.org/10.1080/02602938.2015.1032212
Parvis, L.F. (2001) The importance of communication and public-speaking skills. Journal of Environmental Health, 63(9), 35–44.
Raja, F. (2017) Anxiety level in students of public speaking: Causes and remedies. Journal of Education and Educational Development, 4(1), 94–110.
Russell, G. & Topham, P. (2012) The Impact of Social Anxiety on Student Learning and Well-being in Higher Education. Journal of Mental Health, 21(4), 375–385. https://doi.org/10.3109/09638237.2012.694505
Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P. , Tiwari, A., Er, M.J., Ding , W.M. & Lin, C.-T. (2017) A review of clustering techniques and developments. Neurocomputing, 267, 664–681. https://doi.org/10.1016/j.neucom.2017.06.053
Schubert, C., Lambertz, M., Nelesen, R.A., Bardwell, W., Choi, J.B. & Dimsdale, J.E. (2009) Effects of stress on heart rate complexity—a comparison between short-term and chronic stress. Biological Psychology, 80(3), 325–332.
Spielberger, C.D. (1966) Anxiety and Behaviour. Academic, New York, NY, USA.
Copyright (c) 2025 Distance Education Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.






