Meta-análisis: Intervalos de confianza e Intervalos de predicción
Resumen
En los informes meta-analíticos se suelen reportar varios tipos de intervalos, hecho que ha generado cierta confusión a la hora de interpretarlos. Los intervalos de confianza reflejan la incertidumbre relacionada con un número, el tamaño del efecto medio paramétrico. Los intervalos de predicción reflejan el tamaño paramétrico probable en cualquier estudio de la misma clase que los incluidos en un meta-análisis. Su interpretación y aplicaciones son diferentes. En este artículo explicamos su diferente naturaleza y cómo se pueden utilizar para responder preguntas específicas. Se incluyen ejemplos numéricos, así como su cálculo con el paquete metafor en R.
Descargas
Citas
Blázquez‑Rincón, D., Sánchez‑Meca, J., Botella, J., & Suero, M. (2023). Heterogeneity estimation in meta‑analysis of standardized mean differences when the distribution of random effects departs from normal: A Monte Carlo simulation study. BMC Medical Research Methodology, 23(1), 19. https://doi.org/1 .1186/s12874-022-01809-0
Borenstein, M. (2019a). Common mistakes in meta-analysis. Englewood, NJ: Biostat inc.
Borenstein, M. (2019b). Heterogeneity in meta-analysis. In H. Cooper, L. V. Hedges, & J. C. Valentine (eds.), The Handbook of Research Synthesis and Meta-analysis, 3rd ed. (pp. 453-468). New York: Russell Sage Foundation.
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2017). Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8(1), 5-18. https://doi.org/1 .1002/jrsm.1230
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2021). Introduction to meta-analysis (2ª ed.). Chichester, UK: John Wiley and sons. [Chapter 17]
Botella, J., & Sánchez-Meca, J. (2015). [Meta-analysis in Social and Health Sciences] Meta-análisis en Ciencias Sociales y de la Salud. Madrid: Editorial Síntesis.
Hartung, J., & Knapp, G. (2001). On tests of the overall treatment effect in meta-analysis with normally distributed responses. Statistics in Medicine, 20(12), 1771-1782. https://doi.org/1 .1002/sim.791
Hedges, L. V., & Olkin, I. (1985). Statistical Methods for Meta-analysis. San Diego, CA: Academic Press.
Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (Eds) (2019). Cochrane handbook for systematic reviews of interventions. (2nd edition). Wiley.
Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta‐analysis. Statistics in medicine, 21(11), 1539-1558. https://doi.org/1 .1002/sim.1186
Higgins, J. P., Thompson, S. G., & Spiegelhalter, D. J. (2009). A re‐evaluation of random‐effects meta‐analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172(1), 137-159. https://doi.org/1 .1111/j.1467-985X.2008.00552.x
Huedo-Medina, T., Sánchez-Meca, J., Marín-Martínez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistics or I2 index? Psychological Methods, 11, 193–206. https://doi.org/1 .1037/1082-989X.11.2.193
Hunter, J. E., & Schmidt, F. L. (1990). Methods of meta-analysis: Correcting error and bias in research findings. Newbury Park, CA: Sage.
IntHout, J., Ioannidis, J. P., & Borm, G. F. (2014). The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Medical Research Methodology, 14(25). http://www.biomedcentral.com/1471-2288/14/25
IntHout, J., Ioannidis, J. P., Rovers, M. M., & Goeman, J. J. (2016). Plea for routinely presenting prediction intervals in meta-analysis. BMJ open, 6(7), e010247. http://doi:1 .1136/bmjopen-2015-010247
Jackson, D., Law, M., Rücker, G., & Schwarzer, G. (2017). The Hartung-Knapp modification for random-effects meta-analysis: A useful refinement but are there any residual concerns? Statistics in Medicine, 36, 3923–3934. https://doi.org/1 .1002/sim.7411
Langan, D., Higgins, J. P., & Simmonds, M. (2017). Comparative performance of heterogeneity variance estimators in meta‐analysis: a review of simulation studies. Research Synthesis Methods, 8(2), 181-198. https://doi.org/1 .1002/jrsm.1198
Langan, D., Higgins, J. P., Jackson, D., Bowden, J., Veroniki, A. A., Kontopantelis, E., ... & Simmonds, M. (2019). A comparison of heterogeneity variance estimators in simulated random‐effects meta‐analyses. Research Synthesis Methods, 10(1), 83-98. https://doi.org/1 .1002/jrsm.1316
Partlett, C., & Riley, R.D. (2017). Random effects meta-analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation. Statistics in Medicine, 36, 301-317. https://doi.org/1 .1002/sim.7140
Riley, R. D., Higgins, J. P., & Deeks, J. J. (2011). Interpretation of random effects meta-analyses. BMJ, 342. https://doi.org/1 .1136/bmj.d549
Sánchez-Meca, J., & Marín-Martínez, F. (2008). Confidence intervals for the overall effect size in random-effects meta-analysis. Psychological Methods, 13, 31-48. https://doi.org/1 .1037/1082-989X.13.1.31
Schmid, C. H., Stijnen, T., & White, I. (Eds.). (2021). Handbook of Meta-analysis. CRC Press.
Schmid, C. H, Carlin, B. P., & Welton, N. J. (2021). Bayesian Methods for Meta-analysis. En Handbook of Meta-Analysis (pp. 41-64). Chapman and Hall/CRC.
Sidik, K., & Jonkman, J. N. (2002). A simple confidence interval for meta-analysis. Statistics in Medicine, 21(21), 3153–3159. https://doi.org/1 .1002/sim.1262
Stijnen, T., White, I. R., & Schmid, C. H. (2021). Analysis of univariate study-level summary data using normal models. In Handbook of Meta-Analysis (pp. 41-64). Chapman and Hall/CRC. [Section 4.4.4.2]
Suero, M., Botella, J., & Durán, J. I. (2023). Methods for estimating the sampling variance of the standardized mean difference. Psychological Methods, 28(4), 895-904. https://doi.org/1 .1037/met0000446
Suero, M., Botella, J., Durán, J. I., & Blázquez-Rincón, D. (2023, September 12). Reformulating the meta-analytical random effects model as a mixture model. https://doi.org/1 .17605/OSF.IO/V2FDE
Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., ... & Salanti, G. (2016). Methods to estimate the between‐study variance and its uncertainty in meta‐analysis. Research Synthesis Methods, 7(1), 55-79. https://doi.org/1 .1002/jrsm.1164
Viechtbauer W. (2005). Bias and efficiency of meta-analytic variance estimators in the random-effects Model. Journal of Educational and Behavioral Statistics, 30, 261–293. https://doi.org/1 .3102/10769986030003261
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48. https://doi.org/1 .18637/jss.v036.i03
Viechtbauer, W. (2023). Package ‘metafor’. Unpublished document. University de Maastricht.
Viechtbauer, W., López-López, J. A., Sánchez-Meca, J., & Marín-Martínez, F. (2015). A comparison of procedures to test for moderators in mixed-effects meta-regression models. Psychological Methods, 20, 360-374. https://doi.org/1 .1037/met0000023
Derechos de autor 2024 Servicio de Publicaciones, Universidad de Murcia (España)
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia, 2024
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada y enviada a la revista) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.