Realidad aumentada en la enseñanza de la instrumentación en materias STEM: aprendizaje inmersivo mediante PEARL en educación superior

Autores/as

Palabras clave: realidad aumentada, educación STEM, instrumentación electrónica, aprendizaje inmersivo, laboratorios virtuales

Resumen

La comprensión y el manejo de la instrumentación es una habilidad fundamental para los estudiantes, especialmente en los campos de ciencia, tecnología, ingeniería y matemáticas (STEM). No obstante, el acceso restringido a laboratorios, la complejidad en el manejo de equipos reales y la exigencia de una supervisión experta presentan obstáculos considerables para un aprendizaje seguro y efectivo. En este marco, PEARL (Paderborner Elektrotechnik Augmented Reality Labor) emerge como una aplicación formativa innovadora que utiliza la realidad aumentada (RA). Esta plataforma permite a los usuarios interactuar de manera inmersiva con herramientas como osciloscopios, generadores de funciones, y multímetros, enriqueciendo los ambientes físicos con información aumentada para simular operaciones y procedimientos en tiempo real. Este estudio analiza su impacto en el aprendizaje a través de un enfoque cuasi-experimental que incluye grupos de control y experimental. Los resultados muestran mejoras significativas en el rendimiento técnico y en la autoconfianza del grupo que utilizó RA, así como una valoración alta en términos de usabilidad y experiencia de uso. Estos hallazgos refuerzan la efectividad de PEARL como recurso para la enseñanza de la instrumentación electrónica en educación superior, ayudando a mitigar las limitaciones de los laboratorios tradicionales y promoviendo metodologías de aprendizaje activas, accesibles y seguras.

Descargas

Los datos de descargas todavía no están disponibles.
Metrics
Vistas/Descargas
  • Resumen
    2
  • PDF
    1
  • PDF
    1

Citas

Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational research review, 20, 1-11.

Al-Ansi, A. M., Jaboob, M., Garad, A., & Al-Ansi, A. (2023). Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Social Sciences & Humanities Open, 8(1), 100532.

Alan, F. V. (2022). Computer-Based Interactive Analog Multimeter Simulator. Development, 1(1), 17-28.

Alptekin, M., & Temmen, K. (2018). Design concept and prototype for an augmented reality based virtual preparation laboratory training in electrical engineering. In 2018 IEEE Global Engineering Education Conference (EDUCON) (pp. 963-968). IEEE.

Ang, I. J. X., & Lim, K. H. (2019). Enhancing STEM education using augmented reality and machine learning. In 2019 7th International Conference on Smart Computing & Communications (ICSCC) (pp. 1-5). IEEE.

Azuma, R. T. (1997). A survey of augmented reality. Presence: teleoperators & virtual environments, 6(4), 355-385.

Bacca, J., Baldiris, S., Fabregat, R., Graf, S., & Kinshuk. (2014). Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society, 17(4), 133–149.

Bandura, A. (2006). Guide for constructing self-efficacy scales. Self-efficacy beliefs of adolescents, 5(1), 307-337.

Bautista, L. E., Maradei, F., & Pedraza, G. (2025). Análisis de la Disposición Espacial de Contenido en entornos de Realidad Aumentada y su Efecto en la Carga Cognitiva de los Usuarios. Pixel-Bit. Revista de Medios y Educación. 72, 39–69.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300.

Billinghurst, M., & Kato, H. (2002). Collaborative augmented reality. Communications of the ACM, 45(7), 64-70.

Boulo, J., Blanchette, A. K., Cyr, A., & McFadyen, B. J. (2024). Validity and reliability of the tracking measures extracted from the oculus quest 2 during locomotion. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 12(1), 2274391.

Cabero-Almenara, J., Miravete-Gracia, M., & Rodríguez, A. P. (2025). Aprendizaje en Realidad Virtual: impacto en la carga cognitiva y el rendimiento del alumnado. Revista de Educación a Distancia (RED), 25(82).

Carmigniani, J., & Furht, B. (2011). Augmented reality: an overview. Handbook of augmented reality, 3-46.

Chaljub-Hasbún, J., Almenara, J. C., Michel-Acosta, P., Bello, R., & Pepín, J. (2025). Usability of a virtual reality resource for oscilloscope teaching: expert assessment. IJERI: International Journal of Educational Research and Innovation, 24, 1-15.

Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of science education and technology, 22(4), 449-462.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

Creswell, J. W., & Guetterman, T. C. (2024). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson. One Lake Street, Upper Saddle River, New Jersey.

Cumming, G. (2014). The new statistics: Why and how. Psychological science, 25(1), 7-29.

De Jong, T., & Lazonder, A. W. (2005). The guided discovery principle in multimedia learning. The Cambridge handbook of multimedia learning, 2, 371-390.

del Cerro Velázquez, F., & Morales Méndez, G. (2018). Augmented reality and mobile devices: A binominal methodological resource for inclusive education (SDG 4). An example in secondary education. Sustainability, 10(10), 3446.

del Cerro Velázquez, F., & Morales Méndez, G. (2021). Systematic review of the development of spatial intelligence through augmented reality in stem knowledge areas. Mathematics, 9(23), 3067.

Del-Moral-Pérez, M. E., López-Bouzas, N., & Castañeda-Fernández, J. (2025). Microrrelatos, codificación robótica, aplicaciones digitales y realidad aumentada para potenciar el pensamiento computacional infantil. Pixel-Bit: Revista de medios y educación, 73, 154-180.

Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & education, 68, 586-596.

Estrada, J., Paheding, S., Yang, X., & Niyaz, Q. (2022). Deep-learning-incorporated augmented reality application for engineering lab training. Applied Sciences, 12(10), 5159.

Fonseca, D., Redondo, E., & Villagrasa, S. (2015). Mixed-methods research: a new approach to evaluating the motivation and satisfaction of university students using advanced visual technologies. Universal Access in the Information Society, 14(3), 311-332.

García, F. M., Rojas, L. E. B., & Pedraza, G. (2023). Carga cognitiva y esfuerzo mental durante el cambio de contexto en entornos de realidad aumentada con fines de aprendizaje procedimental. Pixel-Bit. Revista de Medios y Educación, 68, 305-340.

Garzón, J., Pavón, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual reality, 23(4), 447-459.

Gutiérrez, J. M., & Fernández, M. D. M. (2014). Applying augmented reality in engineering education to improve academic performance & student motivation. The International journal of engineering education, 30(3), 625-635.

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn?. Educational psychology review, 16(3), 235-266.

Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & education, 71, 1-13.

Ibáñez, M. B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123.

Kanivets, O. V., Kanivets, I. M., & Gorda, T. M. (2022). Development of an augmented reality mobile physics application to study electric circuits. Educational Technology Quarterly, 4, 347-365.

Keith, N., & Frese, M. (2005). Self-regulation in error management training: emotion control and metacognition as mediators of performance effects. Journal of Applied Psychology, 90(4), 677.

Keller, J. M. (2009). Motivational design for learning and performance: The ARCS model approach. Springer Science & Business Media.

Kolb, D. A. (2013). The process of experiential learning. In Culture and processes of adult learning (pp. 138-156). Routledge.

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in psychology, 4, 863.

Lave, J., & Wenger, E. (2001). Legitimate peripheral participation in communities of practice. In Supporting lifelong learning (pp. 121-136). Routledge.

López, V. L., de la Cruz, J., Barrios, Á. N., Brusadin, R., Crespo, M. J., Esquer, I. S., ... & Campos, R. R. (2024). Modelización 3D de última generación y simulación mediante dispositivos de realidad virtual para mejorar el proceso de enseñanza-aprendizaje de cirugía hepatobiliar con alumnos de medicina. Revista de Educación a Distancia (RED), 24(79).

Martín-Gutiérrez, J., Saorín, J. L., Contero, M., Alcañiz, M., Pérez-López, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77-91.

Mekni, M., & Lemieux, A. (2014). Augmented reality: Applications, challenges and future trends. In International Conference, 13th, Applied computer and applied computational science (pp. 205-214).

Meskhi, B., Ponomareva, S., & Ugnich, E. (2019). E-learning in higher inclusive education: needs, opportunities and limitations. International journal of educational management, 33(3), 424-437.

Morales Méndez, G., & Lozano Avilés, A. B. (2025). Realidad aumentada y GeoGebra 3D para mejorar la inteligencia espacial en la enseñanza de la geometría volumétrica. Revista de Educación a Distancia (RED), 25(82).

Morales Méndez, G., & del Cerro Velázquez, F. (2025). Adaptive Augmented Reality Architecture for Optimising Assistance and Safety in Industry 4.0. Big Data and Cognitive Computing, 9(5), 133.

Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological methods, 7(1), 105.

Nielsen, J. (1994). Usability engineering. Morgan Kaufmann Publishers Inc.

Nursita, Y. M., & Hadi, S. (2021). Development of mobile augmented reality based media for an electrical measurement instrument. In Journal of Physics: Conference Series (Vol. 2111, No. 1, p. 012029). IOP Publishing.

Paderborn University, Department of Teaching Technology. (2025). Technikdidaktik gewinnt mit PEARL internationalen Preis für Online-Labore. Universität Paderborn.

Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of educational research, 66(4), 543-578.

Palacios-Rodríguez, A., Cabero-Almenara, J., & Serrano-Hidalgo, M. (2024). Educación Médica y Carga Cognitiva: Estudio de la Interacción con Objetos de Aprendizaje en Realidad Virtual y Vídeo 360º. Revista de Educación a Distancia (RED), 24(79).

Pérez-López, D., & Contero, M. (2013). Delivering educational multimedia contents through an augmented reality application: A case study on its impact on knowledge acquisition and retention. Turkish Online Journal of Educational Technology-TOJET, 12(4), 19-28.

Pordanjani, Z. A., & Salehi, K. (2025). Limitations of Electronic Assessment: A Systematic Review. Quanta Research, 3(1), 111-130.

Radu, I. (2014). Augmented reality in education: a meta-review and cross-media analysis. Personal and ubiquitous computing, 18(6), 1533-1543.

Salmi, H., Thuneberg, H., & Vainikainen, M. P. (2017). Making the invisible observable by Augmented Reality in informal science education context. International Journal of Science Education, Part B, 7(3), 253-268.

Sandoval Pérez, S., Gonzalez Lopez, J. M., Villa Barba, M. A., Jimenez Betancourt, R. O., Molinar Solís, J. E., Rosas Ornelas, J. L., ... & Rodriguez Haro, F. (2022). On the use of augmented reality to reinforce the learning of power electronics for beginners. Electronics, 11(3), 302.

Singh, G., & Ahmad, F. (2024). An interactive augmented reality framework to enhance the user experience and operational skills in electronics laboratories. Smart Learning Environments, 11(1), 5.

Syberfeldt, A., Danielsson, O., & Gustavsson, P. (2017). Augmented reality smart glasses in the smart factory: Product evaluation guidelines and review of available products. Ieee Access, 5, 9118-9130.

Tene, T., Marcatoma Tixi, J. A., Palacios Robalino, M. D. L., Mendoza Salazar, M. J., Vacacela Gomez, C., & Bellucci, S. (2024). Integrating immersive technologies with STEM education: a systematic review. Frontiers in Education, 9, 1410163.

Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & education, 62, 41-49.

Yunus, Suwito, D., Indriyanti, A. D., Pambudi, R. G., & Sari, D. P. (2025). Development of welding technique teaching module based on augmented reality ıntegrated (ARI) equipped with 3D animation simulation to ımprove 21st century skills of vocational high school students. Cogent Education, 12(1), 2505279.

Yoon, S., Anderson, E., Lin, J., & Elinich, K. (2017). How augmented reality enables conceptual understanding of challenging science content. Journal of Educational Technology & Society, 20(1), 156-168.

Zajda, J. (2021). Constructivist learning theory and creating effective learning environments. In Globalisation and education reforms: Creating effective learning environments (pp. 35-50). Cham: Springer International Publishing.

Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into practice, 41(2), 64-70

Publicado
01-01-2026
Cómo citar
Morales-Méndez, G., Lozano-Avilés, A. B., & Robles-Robles, J. (2026). Realidad aumentada en la enseñanza de la instrumentación en materias STEM: aprendizaje inmersivo mediante PEARL en educación superior. Revista De Educación a Distancia (RED), 26(83). Recuperado a partir de https://revistas.um.es/red/article/view/677971
Número
Sección
Artículos

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.