Realidad aumentada y GeoGebra 3D para mejorar la inteligencia espacial en la enseñanza de la geometría volumétrica
Resumen
Este estudio analiza el impacto de la realidad aumentada (RA) mediante la aplicación GeoGebra 3D en la enseñanza de la geometría volumétrica y en la mejora de la inteligencia espacial en estudiantes de secundaria. La inteligencia espacial, fundamental en áreas STEM, se desarrolla a través de la visualización y manipulación de objetos tridimensionales, habilidades que los métodos tradicionales de enseñanza no logran potenciar completamente. Se implementó un diseño cuasi-experimental con un grupo experimental, que utilizó GeoGebra 3D con RA, y un grupo control, que trabajó con métodos tradicionales. La muestra incluyó estudiantes de secundaria y se aplicaron el test PSVT:R para medir habilidades espaciales, pruebas académicas y cuestionarios de percepción. Los resultados muestran una mejora significativa en las habilidades de visualización y rotación espacial en el grupo experimental, así como un incremento en la motivación y el interés de los estudiantes. La RA facilitó la interacción y comprensión de conceptos geométricos complejos, favoreciendo un aprendizaje más activo y significativo. En conclusión, la integración de GeoGebra 3D con RA mejora la inteligencia espacial y optimiza el proceso de enseñanza de la geometría volumétrica, posicionándose como una herramienta tecnológica eficaz e innovadora en la educación secundaria.
Descargas
-
Resumen789
-
PDF 520
-
PDF520
Citas
Atit, K., Power, J. R., Pigott, T., Lee, J., Geer, E. A., Uttal, D. H., ... & Sorby, S. A. (2022). Examining the relations between spatial skills and mathematical performance: A meta-analysis. Psychonomic bulletin & review, 1-22.
Baltaci, S., & Yildiz, A. (2015). GeoGebra 3D from the perspectives of elementary pre-service mathematics teachers who are familiar with a number of software programs. Cypriot Journal of Educational Sciences, 10(1), 12-17.
Buchner, J., & Kerres, M. (2023). Media comparison studies dominate comparative research on augmented reality in education. Computers & Education, 195, 104711.
Campbell, D. T., & Stanley, J. C. (2015). Experimental and quasi-experimental designs for research. Ravenio books.
Chang, C. Y., & Hwang, G. J. (2019). Trends in digital game-based learning in the mobile era: A systematic review of journal publications from 2007 to 2016. International Journal of Mobile Learning and Organisation, 13(1), 68-90.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
Crollen, V., & Noël, M. P. (2015). Spatial and numerical processing in children with high and low visuospatial abilities. Journal of Experimental Child Psychology, 132, 84-98.
del Cerro Velázquez, F., & Morales Méndez, G.. (2017). Augmented Reality as a tool for improving spatial intelligence in secondary education students. Revista de Educación a Distancia (RED), 54.
del Cerro Velázquez, F., & Morales Méndez, G. (2021). Systematic review of the development of spatial intelligence through augmented reality in stem knowledge areas. Mathematics, 9(23), 3067.
del Cerro Velázquez, F., & Morales Méndez, G. (2021). Application in augmented reality for learning mathematical functions: A study for the development of spatial intelligence in secondary education students. Mathematics, 9(4), 369.
Dunleavy, M., & Dede, C. (2014). Augmented reality teaching and learning. Handbook of research on educational communications and technology, 735-745.
Ernst, J. V., Williams, T. O., Clark, A. C., & Kelly, D. P. (2017). Factors of spatial visualization: An analysis of the PSVT: R. The Engineering Design Graphics Journal, 81(1).
Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: State of the art and perspectives. eLearning & Software for Education (eLSE), 1, 133-141.
Furió, D., González-Gancedo, S., Juan, M. C., Seguí, I., & Rando, N. (2013). Evaluation of learning outcomes using an educational iPhone game vs. traditional game. Computers & Education, 64, 1-23.
Gecu-Parmaksiz, Z., & Delialioğlu, Ö. (2020). The effect of augmented reality activities on improving preschool children's spatial skills. Interactive Learning Environments, 28(7), 876-889.
Hawes, Z. C., Gilligan-Lee, K. A., & Mix, K. S. (2022). Effects of spatial training on mathematics performance: A meta-analysis. Developmental Psychology, 58(1), 112.
Hegarty, M. (2010). Components of spatial intelligence. In Psychology of learning and motivation (Vol. 52, pp. 265-297). Academic Press.
Hoe, Z. Y., Lee, I. J., Chen, C. H., & Chang, K. P. (2019). Using an augmented reality-based training system to promote spatial visualization ability for the elderly. Universal Access in the Information Society, 18, 327-342.
Hohenwarter, M., & Fuchs, K. (2004). Combination of dynamic geometry, algebra and calculus in the software system GeoGebra. In Computer Algebra Systems and Dynamic Geometry Systems in Mathematics Teaching Conference (pp. 1-6). University of Pecs.
Hung, Y. H., Chen, C. H., & Huang, S. W. (2017). Applying augmented reality to enhance learning: a study of different teaching materials. Journal of Computer Assisted Learning, 33(3), 252-266.
Ibáñez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109-123.
İbili, E., Çat, M., Resnyansky, D., Şahin, S., & Billinghurst, M. (2020). An assessment of geometry teaching supported with augmented reality teaching materials to enhance students' 3D geometry thinking skills. International Journal of Mathematical Education in Science and Technology, 51(2), 224-246.
Juandi, D., Kusumah, Y. S., Tamur, M., Perbowo, K. S., & Wijaya, T. T. (2021). A meta-analysis of Geogebra software decade of assisted mathematics learning: what to learn and where to go?. Heliyon, 7(5).
Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational thinking from a disciplinary perspective: Integrating computational thinking in K-12 science, technology, engineering, and mathematics education. Journal of Science Education and Technology, 29, 1-8.
Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue Spatial Visualization Tests: Visualization of Rotations (PSVT:R). Educational Psychology Review, 25(1), 69-94.
Ministry of Education and Vocational Training (2022). Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. Boletín Oficial del Estado (BOE), no. 76, 30 March 2022, pages 38949 to 39120. https://www.boe.es/eli/es/rd/2022/03/29/217
Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206.
Morales Méndez, G., del Cerro Pérez, A., & del Cerro Velázquez, F. (2024). Prototype Pultrusion of Recycled Polyethylene Terephthalate Plastic Bottles into Filament for 3D Eco-Printing: Education for a Sustainable Development Project. Sustainability, 16(19), 8347.
Mystakidis, S., Christopoulos, A., & Pellas, N. (2022). A systematic mapping review of augmented reality applications to support STEM learning in higher education. Education and Information Technologies, 27(2), 1883-1927.
Newcombe, N. S., & Shipley, T. F. (2014). Thinking about spatial thinking: New typology, new assessments. In Studying visual and spatial reasoning for design creativity (pp. 179-192). Dordrecht: Springer Netherlands.
Nguyen, T., Watts, T. W., Duncan, G. J., Clements, D. H., Sarama, J. S., Wolfe, C., & Spitler, M. E. (2016). Which preschool mathematics competencies are most predictive of fifth grade achievement?. Early childhood research quarterly, 36, 550-560.
Parong, J., & Mayer, R. E. (2021). Learning about history in immersive virtual reality: does immersion facilitate learning?. Educational Technology Research and Development, 69(3), 1433-1451.
Patsiomitou, S. (2008). The Development of Students Geometrical Thinking through Transformational Processes and Interaction Techniques in a Dynamic Geometry Environment. Issues in Informing Science & Information Technology, 5.
Pellas, N., Fotaris, P., Kazanidis, I., & Wells, D. (2019). Augmenting the learning experience in primary and secondary school education: A systematic review of recent trends in augmented reality game-based learning. Virtual Reality, 23(4), 329-346.
Radu, I. (2014). Augmented reality in education: A meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18, 1533-1543.
Solvang, L., & Haglund, J. (2021). How can GeoGebra support physics education in upper-secondary school-a review. Physics Education, 56(5), 055011.
Sorby, S. A. (2009). Educational research in developing 3-D spatial skills for engineering students. International Journal of Science Education, 31(3), 459-480.
Sorby, S. A., Veurink, N., & Streiner, S. (2018). Does spatial skills instruction improve STEM outcomes? The answer is "yes." Learning and Individual Differences, 67, 209-222.
Taber, K. S. (2018). The use of Cronbach's alpha when developing and reporting research instruments in science education. Research in science education, 48, 1273-1296.
Uriarte-Portillo, A., Zatarain-Cabada, R., Barrón-Estrada, M. L., Ibáñez, M. B., & González-Barrón, L. M. (2023). Intelligent Augmented Reality for Learning Geometry. Information, 14(4), 245.
Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how?. In Psychology of learning and motivation (Vol. 57, pp. 147-181). Academic Press.
Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013). Exploring and enhancing spatial thinking: Links to achievement in STEM disciplines. Current Directions in Psychological Science, 22(5), 367-373.
Wang, M. T., & Degol, J. L. (2017). Gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educational psychology review, 29, 119-140.
Wassie, Y. A., & Zergaw, G. A. (2019). Some of the potential affordances, challenges and limitations of using GeoGebra in mathematics education. Eurasia Journal of Mathematics, Science and Technology Education, 15(8).
Weinhandl, R., Lavicza, Z., Hohenwarter, M., & Schallert, S. (2020). Enhancing flipped mathematics education by utilising GeoGebra. International Journal of Education in Mathematics, Science and Technology, 8(1), 1-15.
Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & education, 62, 41-49.
Derechos de autor 2025 Revista de Educación a Distancia (RED)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.







