Educación STEM en y para el mundo digital

El papel de las herramientas digitales en el desempeño de prácticas científicas, ingenieriles y matemáticas

Autores/as

DOI: https://doi.org/10.6018/red.410011
Palabras clave: Herramientas digitales, TIC, STEM, educación científica, competencia digital.

Agencias de apoyo

  • Investigación financiada por el Ministerio de Economía y Competitividad (con referencia EDU2015-66643-C2-1-P) y realizada en el marco del grupo consolidado ACELEC reconocido por la AGAUR (con referencia 2017SGR1399).

Resumen

Actualmente existe un amplio abanico de herramientas digitales que se pueden usar en la enseñanza de la ciencia, la tecnología, la ingeniería y la matemática (las denominadas disciplinas STEM) durante la escolaridad primaria y secundaria. A partir de las definiciones propuestas por documentos marco de amplio consenso internacional, se discuten los puntos de encuentro entre la educación STEM y las herramientas digitales, y cómo una adecuada simbiosis entre ambas puede servir tanto para mejorar las competencias científicas, matemáticas y tecnológicas de los estudiantes como para mejorar sus competencias digitales necesarias para el desarrollo personal y profesional en la era digital. Pretendemos aportar una perspectiva al uso de herramientas digitales en el aula que trascienda las modas pasajeras, y que se centre en por qué y en el cómo usar cada una de estas herramientas, y para ello nos centramos en señalar tanto las oportunidades que ofrece la enseñanza digital para el aprendizaje STEM como las oportunidades que ofrece la enseñanza STEM para el aprendizaje digital. Con este conjunto de reflexiones y aportaciones provenientes de la investigación en el ámbito proponemos superar el debate sobre “herramientas digitales sí o no”. Teniendo en cuenta los beneficios de las mismas, en particular para un ámbito con tanta relevancia cultural, social y económica como STEM, lo importante sería dedicar más esfuerzos a clarificar “cómo y para qué” usar estas herramientas en la escuela.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdulwahed, M., & Nagy, Z. K. (2011). The TriLab, a novel ICT based triple access mode laboratory education model. Computers & Education, 56, 262–274.

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. Retrieved from http://www.sciencedirect.com/science/article/B6VFW-4JXPS4C-1/2/674d9e5ed47f7a90551606d4f2923ff9

Alonso, M. F. (2011). Demostraciones experimentales sobre la caída libre. Alambique: Didáctica de Las Ciencias Experimentales, (69), 99–112.

Ananiadou, K., & Claro, M. (2008). 21st Century Skills and Competencies for New Millenium Learners in OECD. Edu/Wkp (2009)20.

Andrade-Lotero, L. A. (2014). Si galileo galilei hubiera tenido una cámara digital: Enseñando ciencias a una generación digital. Ensenanza de Las Ciencias, 32(1), 243–261. https://doi.org/10.5565/rev/ensciencias.998

Araujo, I. S., Veit, E. A., & Moreira, M. A. (2008). Physics students’ performance using computational modelling activities to improve kinematics graphs interpretation. Computers & Education, 50(4), 1128–1140. https://doi.org/10.1016/j.compedu.2006.11.004

Beatty, I. D., & Gerace, W. J. (2009). Technology-Enhanced Formative Assessment: A Research-Based Pedagogy for Teaching Science with Classroom Response Technology. Journal of Science Education and Technology, 18(2), 146–162. https://doi.org/10.1007/s10956-008-9140-4

Beauchamp, G. (2016). Computing and ICT in the Primary School: From pedagogy to practice. Routledge.

Becker, K., & Park, K. (2011). Effects of integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students’ learning: A preliminary meta-analysis. Journal of STEM Education, 12(5), 23–38. http://doi.org/10.1037/a0019454

Beheshti, E. (2017). Computational Thinking in Practice: How STEM Professionals Use CT in Their Work. In American Education Research Association Annual Meeting 2017. Retrieved from http://par.nsf.gov/biblio/10026245

Beichner, R. J., & Abbott, D. S. (1999). Video-Based Labs for Introductory Physics. Journal of Computer Science and Technology, (November), 101–104.

Bennett, V. E., Koh, K., & Repenning, A. (2013). Computing Creativity: Divergence in Computational Thinking. In Proceeding of the 44th ACM Technical Symposium on Computer Science Education - SIGCSE ’13 (pp. 359–364). https://doi.org/10.1145/2445196.2445302

Blikstein, P. (2013). Digital Fabrication and ’Making’ in Education: The Democratization of Invention. In J. Walter-Herrmann & C. Büching (Eds.), FabLabs: Of Machines, Makers and Inventors. Bielefeld: Transcript Publishers.

Bounfour, A. (2016). Digital Futures, Digital Transformation. Springer International Publishing. https://doi.org/10.1007/978-3-319-23279-9

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In annual meeting of the American Educational Research Association (pp. 1–25). Vancouver.

Bybee, R. (2011). Scientific and Engineering Practices in K-12 Classrooms: Understanding “A Framework for K-12 Science Education.” Science Teacher, 78(1), 34–40.

Calao, L. A., Moreno-León, J., Correa, H. E., & Robles, G. (2015). Developing Mathematical Thinking with Scratch An Experiment with 6th Grade Students. In EC-TEL 2015 (pp. 17–27). Toledo (Spain). https://doi.org/10.1007/978-3-319-24258-3

Calderón, S., Núñez, P., Di Laccio, J. L., Iannelli, L. M., & Gil, S. (2015). Aulas-laboratorios de bajo costo, usando TIC. Revista Eureka Sobre Enseñanza Y Divulgación de Las Ciencias, 12(1), 212–226. Retrieved from http://dialnet.unirioja.es/servlet/articulo?codigo=4983182&info=resumen&idioma=ENG

Chalmers, C., Carter, M. L., Cooper, T., & Nason, R. (2017). Implementing Big Ideas to Advance the Teaching and Learning of Science , Technology , Engineering , and Mathematics (STEM). International Journal of Science and Mathematics Education, 15(Suppl 1), 25–43. http://doi.org/10.1007/s10763-017-9799-1

Comer, M., Sneider, C., & Vasquez, J. A. (2013). STEM lesson essentials, grades 3-8: integrating science, technology, engineering, and mathematics. Portsmouth, NH: Heinemann.

Common Core State Standards Initiative (2014). Standards in your state. Retrieved from: www.corestandards.org/in-the-states

Cook, M., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92(5), 848–867. Retrieved from http://dx.doi.org/10.1002/sce.20262

Couso, D. (2017). Per a què estem a STEM? Un intent de definir l’alfabetització STEM per a tothom i amb valors. Ciències, 34, 22-30

Crujeiras, B., & Jiménez-Aleixandre, M. P. (2012). Participar en las prácticas científicas. Aprender sobre la ciencia diseñando un experimento sobre pasta de dientes. Alambique: Didáctica de Las Ciencias Experimentales, 72, 12–19.

De Fruyt, F., Wille, B., & John, O. P. (2015). Employability in the 21st Century: Complex (Interactive) Problem Solving and Other Essential Skills. Industrial and Organisaztional Psychology, 8(2), 276–281. https://doi.org/10.1017/iop.2015.33

de Jong, T. (2019). Moving towards engaged learning in STEM domains; there is no simple answer, but clearly a road ahead. Journal of computer assisted learning, 35(2), 153-167.

Dede, C. (2007). Transforming Education for the 21 st Century : New Pedagogies that Help All Students Attain Sophisticated Learning Outcomes.

Domènech-Casal, J., Llorente, I., Ruiz, N., Serra, C., Ulldemolins, M., Arrizabalaga, A., & Domènech Casal, J. (2016). XYZ-Stars i Solar System Pathway : Ciències : revista del professorat de ciències de primària i secundària, (31), 0021–0028. Retrieved from http://ddd.uab.cat/record/159719

Duschl, R. A., & Grandy, R. (2012). Two Views About Explicitly Teaching Nature of Science. Science and Education, 22, 2109–2139.

Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking Science to School: Learning and Teaching Science in Grades K-8.

ECDL Foundation. (2015). Computing and Digital Literacy - Call for a Holistic Approach.

English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 3. http://doi.org/10.1186/s40594-016-0036-1

European Commission. (2012). Rethinking education: investing in skills for better socio-economic outcomes. Strasbourg. Retrieved from http://www.eqavet.eu/gns/library/policy-documents/policy-documents-2012.aspx

European Commission. (2013). Horizon 2020. Work Programme 2014-2015. General introduction.

European Commission. (2014). Measuring Digital Skills across the EU: EU wide indicators of Digital Competence.

European Schoolnet, & University of Liège. (2013). Survey of schools: ICT in education, benchmarking access, use and attitudes to technology in Europe’s schools, final study report. https://doi.org/10.2759/94499

Evagorou, M., Jimenez-Aleixandre, M. P., & Osborne, J. (2012). “Should We Kill the Grey Squirrels?” A Study Exploring Students’ Justifications and Decision-Making. International Journal of Science Education, 34(3), 401–428. https://doi.org/10.1080/09500693.2011.619211

Faulder, T. R. (2011). Technology Integration: A Research-Based Professional Development Program.

Fridberg, M., Redfors, A., & Thulin, S. (2014). The role of science in Swedish pre-schools : children’s collaborative learning scaffolded by iPads. In 24rd EECERA Conference.

Fridberg, M., Thulin, S., & Redfors, A. (2017). Preschool children’s Collaborative Science Learning Scaffolded by Tablets. Research in Science Education. https://doi.org/10.1007/s11165-016-9596-9

García, A., Arnau, D., & Arevalillo-Herráez, M. (2015). Sobre el efecto de usar el nombre de las cantidades en lugar de sus valores cuando se resuelven problemas de fracciones con un sistema tutorial inteligente. ENSAYOS, Revista de La Facultad de Educación de Albacete, 30(1), 23–33.

Giménez Esteban, C. (2016). GeoGebra : ¿un juguete para el profesorado o una herramienta para su alumnado? Uno. Revista de Didáctica de Las Matemáticas, (71), 26–32. Retrieved from https://ec.europa.eu/epale/en/resource-centre/content/computing-and-digital-literacy-call-holistic-approach

Gómez, M. A., Cañas, A. M., Gutiérrez, M. S., & Martín-Díaz, M. J. (2014). Ordenadores en el aula: ¿Estamos preparados los profesores? Enseñanza de Las Ciencias: Revista de Investigación Y Experiencias Didácticas, 32(2), 239–250. https://doi.org/10.5565/rev/ensciencias.939

González-Calero, J. A., & Arnau, D. (2013). La utilización de la hoja de cálculo en primaria: un puente entre la aritmética y el álgebra. In Las TIC en el aula desde un enfoque multidisciplinar. Aplicaciones prácticas (pp. 99–124). Barcelona: Ediciones Octaedro, S.L.

Grandy, R., & Duschl, R. A. (2007). Reconsidering the character and role of inquiry in school science: Analysis of a conference. Science and Education, 16(2), 141–166. http://doi.org/10.1007/s11191-005-2865-z

Gutiérrez-Soto, J., Arnau, D., & González-Calero, J. A. (2015). Un estudio exploratorio sobre el uso de Dragon Box Algebra como una herramienta para la enseñanza de la resolución de ecuaciones. ENSAYOS, Revista de La Facultad de Educación de Albacete, 30(1), 33–44.

Handal, B., El-Khoury, J., Campbell, C., & Cavanagh, M. (2013). A framework for categorising mobile applications in mathematics education. In Australian Conference on Science and Mathematics Education.

Hennessy, S., Deaney, R., & Ruthven, K. (2006). Situated Expertise in Integrating Use of Multimedia Simulation into Secondary Science Teaching. International Journal of Science Education, 28(7), 701–732.

Hermann, M., Pentek, T., & Otto, B. (2016). Design Principles for Industrie 4.0 Scenarios. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 3928–3937). IEEE. https://doi.org/10.1109/HICSS.2016.488

Hill, S., & Grinnell, C. (2014). Using digital storytelling with infographics in STEM professional writing pedagogy. In 2014 IEEE International Professional Communication Conference (IPCC) (pp. 1–7). Pittsburgh, PA.

Hsu, Y., Hwang, F., Wu, H., Li-Fen, L., & I-Chung, K. (2006). Analysis of Experts’ vs. Novices’ Modeling. In Modelling in Physics and in Physics Education. GIREP 2006. University of Amsterdam.

ICT Literacy Panel. (2002). Digital Transformation: A Framework for ICT Literacy. A Report of the International ICT Literacy Panel. Educational Testing. Retrieved from http://www.ets.org/research/ictliteracy

Izquierdo, M., Espinet, M., García, M. P., Pujol, R. M., & Sanmartí, N. (1999). Caracterización y fundamentación de la ciencia escolar. Enseñanza de Las Ciencias, número ext(December 2015), 79–91.

Jimoyiannis, A. (2010). Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Computers & Education, 55(3), 1259–1269.

Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2014). NMC Horizon Report: 2014 K-12 Edition. Austin, Texas.

Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369–387. https://doi.org/10.1080/09500690110110142

Kopcha, T. J., McGregor, J., Shin, S., Qian, Y., Choi, J., Hill, R., … Choi, I. (2017). Developing an Integrative STEM Curriculum for Robotics Education Through Educational Design Research. Journal of Formative Design in Learning. https://doi.org/10.1007/s41686-017-0005-1

Koupil, J., & Vícha, V. (2011). Simple phenomena, slow motion, surprising physics. Physics Education, 46(4), 454–460. https://doi.org/10.1088/0031-9120/46/4/015

Krajcik, B. J., & Merritt, J. (2012). Engaging Students in Scientific Practices: What does constructing and revising models look like in the science classroom? Science Teacher, 79(1), 38–41.

Lavonen, J., Juuti, K., & Meisalo, V. (2003). Designing a user‐friendly microcomputer‐based laboratory package through the factor analysis of teacher evaluations. International Journal of Science Education, 25(12), 1471–1487. https://doi.org/10.1080/0950069032000072755

Lawrence, I. (2004). Modelling simply , without algebra: beyond the spreadsheet. Physics Education, 39(2003), 281–288.

Lenaerts, J., Wieme, W., Janssens, F., & Van Hoecke, T. (2002). Designing digital resources for a physics course. European Journal of Physics, 23, 175–182.

Levinson, R., & PARRISE Consortium. (2014). Socio-scientific issue-based learning: taking off from STEPWISE. In J. Bencze (Ed.), Science & technology education promoting wellbeing for individual, societies & environments. Dordrecht: Springer Science + Business Media B.V.

Linn, M. (2003). Technology and science education: starting points, research programs, and trends. International Journal of Science Education, 25(6), 727–758.

Lipsmeier, A. (2016). Approaches towards enhanced praxis-orientation in vocational teacher education (VTE). TVET@Asia, (6).

Liu, S.-H. (2011). Factors related to pedagogical beliefs of teachers and technology integration. Computers & Education.

López., Couso, Simarro, Garrido, Grimalt, Hernández & Pintó (2017). El papel de las TIC en la enseñanza de las ciencias en secundaria desde la perspectiva de la práctica científica. Enseñanza de las Ciencias, (Extra), 0691-698

López, V., & Hernandez, M. I. (2015). Scratch as a computational modelling tool for teaching physics. Physics Education, 50(3), 310–316. https://doi.org/10.1088/0031-9120/50/3/310

López, V., & Pintó, R. (2017). Identifying secondary-school students’ difficulties when reading visual representations displayed in physics simulations. International Journal of Science Education, 39(19), 1353–1380. https://doi.org/10.1080/09500693.2017.1332441

Lowe, D., Newcombe, P., & Stumpers, B. (2013). Evaluation of the Use of Remote Laboratories for Secondary School Science Education. Research in Science Education, 43(3), 1197–1219. https://doi.org/10.1007/s11165-012-9304-3

Marquès, P., & Sarramona, J. (2017). Competències bàsiques de l’àmbit digital.

Mellar, H., Bliss, J., Boohan, R., Ogborn, J., & Tompsett, C. (1994). Learning with Artificial Worlds: Computer-Based Modelling in the Curriculum. London: Falmer Press.

Ministerio de Educación, Cultura y Deporte (2015) Orden ECD/65/2015, de 21 de enero, por la que se describen las relaciones entre las competencias, los contenidos y los criterios de evaluación de la educación primaria, la educación secundaria obligatoria y el bachillerato. https://www.boe.es/buscar/pdf/2015/BOE-A-2015-738-consolidado.pdf

Mishra, P., & Yadav, A. (2013). Of Art and Algorithm: Rethinking Technology & Creativity in the 21st Century. TechTrends, 57(3), 10–14. https://doi.org/10.1007/s11528-013-0668-7

Mokros, J. R., & Tinker, R. F. (1987). The impact of microcomputer-based labs on children’s ability to interpret graphs. Journal of Research in Science Teaching, 24(4), 369–383.

Monferrer, J. L., & Forcano, A. (2014). El aprendizaje colaborativo y las TIC en clase de física. Alambique Didàctica de Las Ciencias Experimentales, 37–44.

Neubert, J. C., Mainert, J., Kretzschmar, A., & Greiff, S. (2015). The Assessment of 21st Century Skills in Industrial and Organizational Psychology: Complex and Collaborative Problem Solving. Industrial and Organizational Psychology, 8(2), 238–268. https://doi.org/10.1017/iop.2015.14

NRC. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC.: National Academy of Sciences.

Ogborn, J. (2002). Ownership and transformation: teachers using curriculum innovations. Physics Education, 37(2), 142–146. https://doi.org/10.1088/0031-9120/37/2/307

Oldknow, A., Taylor, R., & Tetlow, L. (2010). Teaching Mathematics Using ICT. Continuum International Publishing Group.

Olympou, G., Zacharia, Z., & de Jong, T. (2012). Making the invisible visible: enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41, 575–596.

Osborne, J. (2014). Teaching Scientific Practices: Meeting the Challenge of Change. Journal of Science Teacher Education, 177–196. http://doi.org/10.1007/s10972-014-9384-1

Osborne, J., & Dillon, J. (2008). Science Education in Europe: Critical Reflections. London (UK): Nuffield Foundation.

Osborne, J., & Hennessy, S. (2007). ICT : Promise , Problems and Future Directions Literature Review in Science Education and the Role of ICT : Promise , Problems and Future Directions.

Ouariachi, T., Olvera-Lobo, D., & Gutiérrez-Perez, J. (2017). Evaluación de juegos online para la enseñanza y aprendizaje del cambio climático. Enseñanza de Las Ciencias, 35(1), 193–214. https://doi.org/http://dx.doi.org/10.5565/rev/ensciencias.2088

Papert, S. (1999). What is Logo? And Who Needs It? In Logo Philosophy and Implementation (pp. IV–XVII).

Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., … Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003

Pintó, R. (2009). Choosing ICT: a matter of learning about learning Science. In P. Kariotoglou, A. Spyrtou, & A. Zoupidis (Eds.), Πρακτικά του ΣυνεδρίΩυ. Florin (Greece): School of education, University of Western Macedonia.

Pintó, R., Couso, D., & Hernández, M. I. (2010). An Inquiry-oriented approach for making the best use of ICT in the classroom. eLearning Papers, 20.

Rogoff, B. (1994). Developing understanding of the idea of communities of learners. Mind, Culture, and Activity, 1(4), 209–229.

Romero, M., & Quesada, A. (2014). Nuevas tecnologías y aprendizaje significativo de las ciencias. Enseñanza de Las Ciencias: Revista de Investigación Y Experiencias Didácticas, 32(1), 101–115.

Russell, D. W., Lucas, K. B., & McRobbie, C. J. (2004). Role of the microcomputer-based laboratory display in supporting the construction of new understandings in thermal physics. Journal of Research in Science Teaching, 41(2), 165–185. https://doi.org/10.1002/tea.10129

Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58, 136–153. https://doi.org/10.1016/j.compedu.2011.07.017

Rychen, D. S., & Salganik, L. H. (2003). Las competencias clave para el bienestar personal, social y económico. (D. S. Rychen & L. H. Salganik, Eds.). Málaga: Ediciones Aljibe.

Saez, J., & Cózar, R. (2016). Pensamiento computacional y programación visual por bloques en el aula de Primaria. Educar, 53(1), 126–149.

Sakschewski, M., Eggert, S., Schneider, S., & Bögeholz, S. (2014). Students’ Socioscientific Reasoning and Decision-making on Energy-related Issues—Development of a measurement instrument. International Journal of Science Education, 36(14), 2291–2313. https://doi.org/10.1080/09500693.2014.920550

Schnotz, W. (2004). An Integrated Model of Text and Picture Comprehension . In R. Mayer (Ed.), Cambridge Handbook of Multimedia Learning .

Shatrevich, V., & Strautmane, V. (2015). Industrialisation factors in post-industrial society. Entrepreneurship and Sustainability Issues, 3(2), 142–153.

Simarro, C. & Couso, D. (2018). Visiones en educación STEAM: y las mates,¿ qué?. Uno: Revista de didáctica de las matematicas, (81), 49-56.

Simarro, C., López, V., Cornellà, P., Perecuala, M., Niell, M., & Estebanell, M. (2016). Més enllà de la programació i la robòtica educativa : el pensament computacional en l ’ ensenyame nt STEAM a infantil i primària . Ciències. Revista Del Professorat de Ciències d’Infantil, Primaria I Secundària, 32, 38–46.

Sjøberg, S. (1997). Scientific literacy and school science: arguments and second thoughts. (Ed.),. In S. Sjøberg & E. Kallerud (Eds.), Science, Technology and Citizenship. The Public Understanding of Science and Technology in Science Education and Research Policy (pp. 9–28). Norwegian Institute for Studies in Research and Higher Education.

Straub, E. T. (2009). Understanding Technology Adoption: Theory and Future Directions for Informal Learning. Review of Educational Research, 79(2), 625–649. https://doi.org/10.3102/0034654308325896

Thornton, R. K., & Sokoloff, D. R. (1990). Learning motion concepts using real-time microcomputer-based laboratory tools. American Journal of Physics, 58(9), 858. https://doi.org/10.1119/1.16350

Torres-Climent, Á. L. (2010). Empleo del laboratorio asistido por ordenador en la Enseñanza de la Física Y Química de Secundaria y Bachillerato. Revista Eureka Sobre Enseñanza Y Divulgación de Las Ciencias, 7(3), 693–707.

Tsai, C., Shen, P., & Lin, R. (2015). Exploring the Effects of Student-Centered Project-Based Learning with Initiation on Students’ Computing Skills: A Quasi-Experimental Study of Digital Storytelling. International Journal of Information and Communication Technology Education (IJICTE), 11(1), 27–43. https://doi.org/10.4018/ijicte.2015010102

Tsybulsky, D. (2019). Transformations and Emerging Implementations of Scientific Practices in the Digital Age. International History, Philosophy, and Science Teaching [IHPST] Proceedings.

Valenduc, G., & Vendramin, P. (2016). Work in the digital economy: sorting the old from the new.

Valiente, O. (2010). 1-1 in Education: Current Practice, International Comparative Research Evidence and Policy Implications. OECD Education Working Papers, 44, 20.

Valkanova, Y., & Watts, M. (2007). Digital story telling in a science classroom: reflective self‐learning (RSL) in action. Early Child Development and Care, 177(6–7), 793–807. https://doi.org/10.1080/03004430701437252

van der Meij, J., & de Jong, T. (2006). Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. . Learning and Instruction, 16, 199–212.

Van Riesen, S. A. N., Gijlers, H., Anjewierden, A. A., & de Jong, T. (2016). Supporting planning and conducting experiments. In Transforming Learning, Empowering Learners: Proceedings of the 12th International Conference of the Learning Science, ICLS 2016, (pp. 823–826). Singapore: International Society of the Learning Sciences.

Vasquez, J. A., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3-8: integrating science, technology, engineering, and mathematics. Portsmouth: Heinemann

Vera Mathias, F., Rivera Campos, R., Fuentes, R., & Romero Maltrana, D. (2015). Estudio del movimiento de caída libre usando vídeos de experimentos. Revista Eureka Sobre Enseñanza Y Divulgación de Las Ciencias, 12(3), 581–592. Retrieved from http://reuredc.uca.es/index.php/tavira/article/view/720

Wagh, A., Cook-Whitt, K., & Wilensky, U. (2017). Bridging inquiry-based science and constructionism: Exploring the alignment between students tinkering with code of computational models and goals of inquiry. Journal of Research in Science Teaching. https://doi.org/10.1002/tea.21379

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5

Wieman, C., Adams, W., & Perkins, K. (2008). PhET: simulations that enhance learning. Science, 322(5902), 682–683. https://doi.org/10.1126/science.1161948

Wing, J. (2006). Computational thinking. In Commun. ACM 49 (pp. 33–35).

Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. Revista de Educación a Distancia (RED), (46). https://doi.org/10.6018/red/46/4

Publicado
31-03-2020
Cómo citar
López Simó, V., Couso Lagarón, D., & Simarro Rodríguez, C. (2020). Educación STEM en y para el mundo digital: El papel de las herramientas digitales en el desempeño de prácticas científicas, ingenieriles y matemáticas . Revista de Educación a Distancia (RED), 20(62). https://doi.org/10.6018/red.410011
Número
Sección
Artículos