La fotobiomodulación puede aumentar la tolerancia al ejercicio y la activación de los músculos del antebrazo en hombres sanos: un estudio cruzado, aleatorizado y controlado con placebo
Agencias de apoyo
- We acknowledge support from the Open Access Publication Fund of the Federal University of Mato Grosso do Sul (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES, Brazil, Finance Code 001].
Resumen
A pesar de los efectos positivos de la fotobiomodulación (FBM) sobre el comportamiento muscular, sus efectos sobre la tolerancia al ejercicio y la hiperemia reactiva (HR) no se conocen bien. Pretendemos evaluar los efectos agudos de la FBM con longitudes de onda de 904 y 660 nm irradiadas sobre los músculos flexores del antebrazo sobre la tolerancia al ejercicio mediante el análisis de la HR y la activación muscular. Este estudio doble ciego y controlado se realizó con 11 participante. Aplicamos aleatoriamente FBM 904 nm, PBM 660 nm y placebo en seis puntos diferentes en el área del músculo flexor dominante. El grupo placebo recibió estimulación en los mismos puntos con un dispositivo apagado. La HR se evaluó midiendo el flujo sanguíneo del antebrazo, que se calculó utilizando el flujo sanguíneo máximo después de una oclusión de 5 minutos con la técnica de pletismografía de oclusión venosa. La electromiografía se evaluó utilizando electrodos de superficie en tres músculos flexores del antebrazo. La raíz cuadrática media (RMS) y la frecuencia mediana (MDF) se trazaron al 25, 50, 75, 100% del límite de tolerancia (Tlim). La irradiación con PBM 606 aumentó la HR en comparación con PBM660 y placebo. Además, PBM 660 y 904 aumentaron el RMS y redujeron el MDF en comparación con el placebo. La irradiación con PBM 660 fue superior a 904 y placebo en el aumento de la HR, pero la aplicación de ambas irradiaciones fue similar en la activación de los músculos del antebrazo. Registro: www.ensaiosclinicos.gov.br RBR-7yspdx.
Descargas
Citas
Aimbire, F., Albertini, R., Pacheco, M. T. T., Castro-Faria-Neto, H. C., Leonardo, P. S. L. M., Iversen, V. V., Lopes-Martins, R. A. B., & Bjordal, J. M. (2006). Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomedicine and Laser Surgery, 24(1), 33–37. https://doi.org/10.1089/PHO.2006.24.33
Arendt-Nielsen, L., & Mills, K. R. (1988). Muscle fibre conduction velocity, mean power frequency, mean EMG voltage and force during submaximal fatiguing contractions of human quadriceps. Eur J Appl Physiol Occup Physiol, 58(1–2), 20–25. http://www.ncbi.nlm.nih.gov/pubmed/3203668
Baroni, B. M., Leal Junior, E. C., De Marchi, T., Lopes, A. L., Salvador, M., & Vaz, M. A. (n.d.). Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol, 110(4), 789–796. https://doi.org/10.1007/s00421-010-1562-z
Borsa, P. A., Larkin, K. A., & True, J. M. (2013). Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athl Train, 48(1), 57–67. https://doi.org/10.4085/1062-6050-48.1.12
da Silva Alves, M. A., Pinfildi, C. E., Neto, L. N., Lourenco, R. P., de Azevedo, P. H., & Dourado, V. Z. (2014). Acute effects of low-level laser therapy on physiologic and electromyographic responses to the cardiopulmonary exercise testing in healthy untrained adults. Lasers Med Sci, 29(6), 1945–1951. https://doi.org/10.1007/s10103-014-1595-3
de Oliveira, A. F. S. S., da Silva, J. L., Camillo, C. A. M., Andraus, R. A. C., & Maia, L. P. (2022). Does photobiomodulation improve muscle performance and recovery? A systematic review. Revista Brasileira de Medicina Do Esporte, 29, e2021_0412. https://doi.org/10.1590/1517-8692202329012021_0412
Dompe, C., Moncrieff, L., Matys, J., Grzech-Leśniak, K., Kocherova, I., Bryja, A., Bruska, M., Dominiak, M., Mozdziak, P., Skiba, T. H. I., Shibli, J. A., Volponi, A. A., Kempisty, B., & Dyszkiewicz-Konwińska, M. (2020). Photobiomodulation-Underlying Mechanism and Clinical Applications. Journal of Clinical Medicine, 9(6), 1–17. https://doi.org/10.3390/JCM9061724
Eberstein, A., & Beattie, B. (1985). Simultaneous measurement of muscle conduction velocity and EMG power spectrum changes during fatigue. Muscle Nerve, 8(9), 768–773. https://doi.org/10.1002/mus.880080905
Ferraresi, C, de Brito Oliveira, T., de Oliveira Zafalon, L., de Menezes Reiff, R. B., Baldissera, V., de Andrade Perez, S. E., Matheucci Junior, E., & Parizotto, N. A. (2011). Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci, 26(3), 349–358. https://doi.org/10.1007/s10103-010-0855-0
Ferraresi, C, Hamblin, M. R., & Parizotto, N. A. (2012). Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med, 1(4), 267–286. https://doi.org/10.1515/plm-2012-0032
Ferraresi, Cleber, Hamblin, M. R., & Parizotto, N. A. (2012). Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics & Lasers in Medicine, 1(4), 267. https://doi.org/10.1515/PLM-2012-0032
Gorgey, A. S., Wadee, A. N., & Sobhi, N. N. (2008). The effect of low-level laser therapy on electrically induced muscle fatigue: a pilot study. Photomed Laser Surg, 26(5), 501–506. https://doi.org/10.1089/pho.2007.2161
Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 4(3), 337–361. https://doi.org/10.3934/BIOPHY.2017.3.337
Hamblin, M. R. (2018). Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochemistry and Photobiology, 94(2), 199. https://doi.org/10.1111/PHP.12864
Harriss, D. J., Macsween, A., & Atkinson, G. (2019). Ethical Standards in Sport and Exercise Science Research: 2020 Update. International Journal of Sports Medicine, 40(13), 813–817. https://doi.org/10.1055/A-1015-3123
Ihsan, F. R. (2005). Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg, 23(3), 289–294. https://doi.org/10.1089/pho.2005.23.289
Lanferdini, F. J., Kruger, R. L., Baroni, B. M., Lazzari, C., Figueiredo, P., Reischak-Oliveira, A., & Vaz, M. A. (2018). Low-level laser therapy improves the VO2 kinetics in competitive cyclists. Lasers Med Sci, 33(3), 453–460. https://doi.org/10.1007/s10103-017-2347-y
Leal-Junior, E. C., Vanin, A. A., Miranda, E. F., de Carvalho Pde, T., Dal Corso, S., & Bjordal, J. M. (2015). Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci, 30(2), 925–939. https://doi.org/10.1007/s10103-013-1465-4
Leal Junior, E. C., Lopes-Martins, R. A., de Almeida, P., Ramos, L., Iversen, V. V, & Bjordal, J. M. (2010). Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol, 108(6), 1083–1088. https://doi.org/10.1007/s00421-009-1321-1
Leal Junior, E. C., Lopes-Martins, R. A., Vanin, A. A., Baroni, B. M., Grosselli, D., De Marchi, T., Iversen, V. V, & Bjordal, J. M. (2009). Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci, 24(3), 425–431. https://doi.org/10.1007/s10103-008-0592-9
Lopes-Martins, R. A., Marcos, R. L., Leonardo, P. S., Prianti Jr., A. C., Muscara, M. N., Aimbire, F., Frigo, L., Iversen, V. V, & Bjordal, J. M. (2006). Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol (1985), 101(1), 283–288. https://doi.org/10.1152/japplphysiol.01318.2005
Luo, W. T., Lee, C. J., Tam, K. W., & Huang, T. W. (2022). Effects of Low-Level Laser Therapy on Muscular Performance and Soreness Recovery in Athletes: A Meta-analysis of Randomized Controlled Trials. Sports Health, 14(5), 687–693. https://doi.org/10.1177/19417381211039766
Manteifel, V., Bakeeva, L., & Karu, T. (1997). Ultrastructural changes in chondriome of human lymphocytes after irradiation with He-Ne laser: appearance of giant mitochondria. J Photochem Photobiol B, 38(1), 25–30. http://www.ncbi.nlm.nih.gov/pubmed/9134752
Marcolino, A. M., Hendler, K. G., Barbosa, R. I., Neves, L. M. S. das, Kuriki, H. U., & Dutra, R. C. (2022). Effect of photobiomodulation therapy (660 nm and 830 nm) on carrageenan-induced edema and pain behavior in mice. BrJP, 5(3), 206–212. https://doi.org/10.5935/2595-0118.20220035-EN
Masuda, K., Masuda, T., Sadoyama, T., Inaki, M., & Katsuta, S. (1999). Changes in surface EMG parameters during static and dynamic fatiguing contractions. J Electromyogr Kinesiol, 9(1), 39–46. http://www.ncbi.nlm.nih.gov/pubmed/10022560
Mathiassen, O. N., Buus, N. H., Olsen, H. W., Larsen, M. L., Mulvany, M. J., & Christensen, K. L. (2006). Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights. Acta Physiologica (Oxford, England), 188(2), 91–101. https://doi.org/10.1111/J.1748-1716.2006.01611.X
Miranda, E. F., Vanin, A. A., Tomazoni, S. S., Grandinetti Vdos, S., de Paiva, P. R., Machado Cdos, S., Monteiro, K. K., Casalechi, H. L., de Tarso, P., de Carvalho, C., & Leal-Junior, E. C. (2016). Using Pre-Exercise Photobiomodulation Therapy Combining Super-Pulsed Lasers and Light-Emitting Diodes to Improve Performance in Progressive Cardiopulmonary Exercise Tests. J Athl Train, 51(2), 129–135. https://doi.org/10.4085/1062-6050-51.3.10
Nampo, F. K., Cavalheri, V., Dos Santos Soares, F., de Paula Ramos, S., & Camargo, E. A. (2016). Low-level phototherapy to improve exercise capacity and muscle performance: a systematic review and meta-analysis. Lasers Med Sci, 31(9), 1957–1970. https://doi.org/10.1007/s10103-016-1977-9
Oron, U., Ilic, S., De Taboada, L., & Streeter, J. (2007). Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg, 25(3), 180–182. https://doi.org/10.1089/pho.2007.2064
Smith, A. E., Walter, A. A., Herda, T. J., Ryan, E. D., Moon, J. R., Cramer, J. T., & Stout, J. R. (2007). Effects of creatine loading on electromyographic fatigue threshold during cycle ergometry in college-aged women. J Int Soc Sports Nutr, 4, 20. https://doi.org/10.1186/1550-2783-4-20
Stout, J. R., Sue Graves, B., Cramer, J. T., Goldstein, E. R., Costa, P. B., Smith, A. E., & Walter, A. A. (2007). Effects of creatine supplementation on the onset of neuromuscular fatigue threshold and muscle strength in elderly men and women (64 - 86 years). J Nutr Health Aging, 11(6), 459–464. http://www.ncbi.nlm.nih.gov/pubmed/17985060
Toma, R. L., Oliveira, M. X., Renno, A. C. M., & Laakso, E. L. (2018). Photobiomodulation (PBM) therapy at 904 nm mitigates effects of exercise-induced skeletal muscle fatigue in young women. Lasers in Medical Science, 33(6), 1197–1205. https://doi.org/10.1007/S10103-018-2454-4
Vassao, P. G., Toma, R. L., Antunes, H. K., Tucci, H. T., & Renno, A. C. (2016). Effects of photobiomodulation on the fatigue level in elderly women: an isokinetic dynamometry evaluation. Lasers Med Sci, 31(2), 275–282. https://doi.org/10.1007/s10103-015-1858-7
World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. (2004). Journal International de Bioethique = International Journal of Bioethics, 15(1), 124–129.
-
Resumen32
-
(167-182) Photobiomodulat...18
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.