Simulador de Realidad Virtual en Cirugía Mínimamente Invasiva Basado en la Ciencia del Diseño y el Marco de Validación de Messick

Autores/as

DOI: https://doi.org/10.6018/red.608201
Palabras clave: simulación por computador, procedimientos quirúrgicos mínimamente invasivos, investigación basada en el diseño, educación médica, realidad virtual, estudio de validación

Resumen

La cirugía mínimamente invasiva es el nuevo estándar quirúrgico que requiere desarrollar simuladores portátiles de bajo costo que permitan democratizar el entrenamiento y el aprendizaje ubicuo.  El estudio presenta el desarrollo y validación de un simulador para el aprendizaje de destrezas psicomotoras básicas en cirugía de invasión mínima que utilizó la combinación de los enfoques metodológicos de Investigación Basada en el Diseño, centrado en el aprendizaje, y de Investigación en Ciencias del Diseño, focalizado en el desarrollo de artefactos. El estudio se desarrolló en cuatro fases. Para la validación del simulador se utilizó el marco propuesto por Messick. En las sucesivas fases de desarrollo intervinieron expertos en cirugía de invasión mínima, residentes de cirugía y estudiantes de Medicina, quienes realizaron una serie de pruebas del artefacto donde se midió su eficacia para el aprendizaje de las destrezas psicomotoras. Los estudios se basaron en encuestas Likert y en la evaluación de los puntajes de las pruebas efectuadas por una población de novatos (grupo referente) y un grupo de expertos. Si bien se obtuvo evidencia para la validez de contenido, no se obtuvo evidencia para la relación con otras variables. La consistencia interna mostró evidencia de buena calidad y se obtuvo evidencia contundente para el logro de curva de aprendizaje entre los novatos.  El enfoque adoptado demostró ser eficaz en el desarrollo de simuladores accesibles y eficaces para el desarrollo de destrezas psicomotoras en cirugía de invasión mínima.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdalla, G., Moran-Atkin, E., Chen, G., Schweitzer, M. A., Magnuson, T. H. y Steele, K. E. (2015). The effect of warm-up on surgical performance: a systematic review. Surgical Endoscopy, 29(6), 1259–1269. https://doi.org/10.1007/S00464-014-3811-4

Aggarwal, R., Moorthy, K. y Darzi, A. (2004). Laparoscopic skills training and assessment. British Journal of Surgery, 91(12), 1549–1558. https://doi.org/10.1002/bjs.4816

Ahlberg, G., Heikkinen, T., Iselius, L., Leijonmarck, C. E., Rutqvist, J. y Arvidsson, D. (2002). Does training in a virtual reality simulator improve surgical performance? Surgical Endoscopy and Other Interventional Techniques, 16(1), 126–129. https://doi.org/10.1007/s00464-001-9025-6

Alvarez-Lopez, F. (2021). Uso de simulación con realidad virtual 3D mediada por gestos para el aprendizaje de destrezas psicomotoras básicas en cirugía mínimamente invasiva [Tesis doctoral, Universitat Oberta de Catalunya]. https://openaccess.uoc.edu/handle/10609/143727

Alvarez-Lopez, F., Maina, M. F., Arango, F. y Saigí-Rubió, F. (2020). Use of a low-cost portable 3D virtual reality simulator for psychomotor skill training in minimally invasive surgery: task metrics and score validity. JMIR Serious Games, 8(4), e19723. https://doi.org/https://doi.org/10.2196/11925

Alvarez-Lopez, F., Maina, M. F. y Saigí-Rubió, F. (2019). Use of commercial off-the-shelf devices for the detection of manual gestures in surgery: systematic literature review. Journal of Medical Internet Research, 21(5), 1–26. https://doi.org/10.2196/11925

Alvarez-Lopez, F., Maina, M. F. y Saigí-Rubió, F. (2020). Use of a low-cost portable 3D virtual reality gesture-mediated simulator for training and learning basic psychomotor skills in minimally invasive surgery: development and content validity study. Journal of Medical Internet Research, 22(7). https://doi.org/10.2196/17491

American Educational Research Association, American Psychological Association, y National Council on Measurement in Education. (2014). Standards for educational and psychological testing. American Educational Research Association.

American Psychological Association, American Educational Research Association, & National Council on Measurement in Education (1974). Standards for educational & psychological tests.

Archer, S. B., Brown, D. W., Smith, C. D., Branum, G. D. y Hunter, J. G. (2001). Bile duct injury during laparoscopic cholecystectomy: results of a national survey. Annals of Surgery, 234(4), 549–558; discussion 558-9. http://www.ncbi.nlm.nih.gov/pubmed/11573048

Aydin, A., Raison, N., Khan, M. S., Dasgupta, P. y Ahmed, K. (2016). Simulation-based training and assessment in urological surgery. Nature Reviews Urology, 13(9): 503–519. Nature Publishing Group. https://doi.org/10.1038/nrurol.2016.147

Bachmann, D., Weichert, F. y Rinkenauer, G. (2015). Evaluation of the leap motion controller as a new contact-free pointing device. Sensors , 15(1), 214–233. https://doi.org/10.3390/s150100214

Barab, S. (2014). Design-based research: a methodological toolkit for engineering change. In R. K. Sawyer (Ed.). The Cambridge Handbook of the Learning Sciences (3rd ed., pp. 151–170). Cambridge University Press. https://doi.org/10.1017/CBO9781139519526.011

Barab, S. y Squire, K. (2004). Design-based research: putting a stake in the ground. Journal of the Learning Sciences, 13(1), 1–14. https://doi.org/10.1207/s15327809jls1301_1

Barnes, R.W. (1987). Surgical handicraft: teaching and learning surgical skills. American Journal of Surgery, 153(5), 422–427

https://doi.org/ 10.1016/0002-9610(87)90783-5

Beckman, T. J., Cook, D. A. y Mandrekar, J. N. (2005). What is the validity evidence for assessments of clinical teaching? Journal of General Internal Medicine, 20(12), 1159–1164. https://doi.org/10.1111/J.1525-1497.2005.0258.X

Bing, E. G., Parham, G. P., Cuevas, A., Fisher, B., Skinner, J., Mwanahamuntu, M. y Sullivan, R. (2019). Using low-cost virtual reality simulation to build surgical capacity for cervical cancer treatment. Journal of Global Oncology, 5(5). https://doi.org/10.1200/JGO.18.00263

Blumenthal, D. (1994). Making medical errors into “medical treasures’’’.” JAMA, 272(23), 1867–1868. http://www.ncbi.nlm.nih.gov/pubmed/7990223

Borgersen, N. J., Naur, T. M. H., Sørensen, S. M. D., Bjerrum, F., Konge, L., Subhi, Y. y Thomsen, A. S. S. (2018). Gathering validity evidence for surgical simulation. Annals of Surgery, 267(6), 1063–1068. https://doi.org/10.1097/SLA.0000000000002652

Botden, S. y Jakimowicz, J. J. (2009). What is going on in augmented reality simulation in laparoscopic surgery? Surgical Endoscopy and Other Interventional Techniques, 23(8), 1693–1700. https://doi.org/10.1007/s00464-008-0144-1

Boyle, E., Kennedy, A. M., Traynor, O. y Hill, A. D. K. (2011). Training surgical skills using nonsurgical tasks-can Nintendo WiiTM improve surgical performance? Journal of Surgical Education, 68(2), 148–154. https://doi.org/10.1016/j.jsurg.2010.11.005

Brown, A. L. (1992). Design experiments: theoretical and methodological challenges in creating complex interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141–178. https://doi.org/10.1207/s15327809jls0202_2

Brualdi, A. (1999). Traditional and modern concepts of validity (ED435714). ERIC.https://files.eric.ed.gov/fulltext/ED435714.pdf

Carter, F. J., Schijven, M. P., Aggarwal, R., Grantcharov, T., Francis, N. K., Hanna, G. B. y Jakimowicz, J. J. (2005). Consensus guidelines for validation of virtual reality surgical simulators. Surgical Endoscopy and Other Interventional Techniques, 19(12), 1523–1532. https://doi.org/10.1007/s00464-005-0384-2

Collins, A. (1992). Toward a design science of education. In E. Scanlon, T. O’Shea (Eds.). New Directions in Educational Technology. NATO ASI Series, 96. https://doi.org/10.1007/978-3-642-77750-9_2

Cook, D. A. (2015). Much ado about differences: Why expert-novice comparisons add little to the validity argument. Advances in Health Sciences Education, 20(3), 829–834. https://doi.org/10.1007/s10459-014-9551-3

Cook, D. A., Brydges, R., Zendejas, B., Hamstra, S. J. y Hatala, R. (2013). Technology-enhanced simulation to assess health professionals: a systematic review of validity evidence, research methods, and reporting quality. Academic Medicine, 88(6), 872–883. https://doi.org/10.1097/acm.0b013e31828ffdcf

Cook, D. A., Zendejas, B., Hamstra, S. J., Hatala, R. y Brydges, R. (2014). What counts as validity evidence? Examples and prevalence in a systematic review of simulation-based assessment. Advances in Health Sciences Education, 19(2), 233–250. https://doi.org/10.1007/s10459-013-9458-4

Dawe, S. R., Pena, G. N., Windsor, J. A., Broeders, J. A. J. L., Cregan, P. C., Hewett, P. J. y Maddern, G. J. (2014). Systematic review of skills transfers after surgical simulation-based training. British Journal of Surgery, 101(9), 1063–1076. https://doi.org/10.1002/bjs.9482

Debes, A. J., Aggarwal, R., Balasundaram, I. y Jacobsen, M. B. (2010). A tale of two trainers: virtual reality versus a video trainer for acquisition of basic laparoscopic skills. American Journal of Surgery, 199(6), 840–845. https://doi.org/10.1016/j.amjsurg.2009.05.016

Deziel, D. J., Millikan, K. W., Economou, S. G., Doolas, A., Ko, S. T. y Airan, M. C. (1993). Complications of laparoscopic cholecystectomy: A national survey of 4,292 hospitals and an analysis of 77,604 cases. American Journal of Surgery, 165(1), 9–14. https://doi.org/10.1016/s0002-9610(05)80397-6

Dresch, A., Pacheco-Lacerda, D. y Valle-Antunes, J. A. J. (2015). Design science research. A method for science and technology advancement. Springer Cham. https://doi.org/10.1007/978-3-319-07374-3

Ebert, L. C., Flach, P. M., Thali, M. J. y Ross, S. (2014). Out of touch - A plugin for controlling OsiriX with gestures using the Leap Controller. Journal of Forensic Radiology and Imaging, 2(3), 126–128. https://doi.org/10.1016/j.jofri.2014.05.006

Fried, G. M. y Feldman, L. S. (2008). Objective assessment of technical performance. World Journal of Surgery, 32(2), 156–160. https://doi.org/10.1007/s00268-007-9143-y

Gaba, D. M. (2004). The future vision of simulation in health care. Quality and Safety in Health Care, 13(1), 2–10. https://doi.org/10.1136/qshc.2004.009878

Gallagher, A. G., Ritter, E. M. y Satava, R. M. (2003). Fundamental principles of validation, and reliability: Rigorous science for the assessment of surgical education and training. Surgical Endoscopy and Other Interventional Techniques, 17(10), 1525–1529. https://doi.org/10.1007/s00464-003-0035-4

Gasperin, B. D. M., Zanirati, T. y Cavazzola, L. T. (2018). Can virtual reality be as good as operating room training? Experience from a residency program in general surgery. ABCD. Arquivos Brasileiros de Cirurgia Digestiva, 31(4), e1397. https://doi.org/10.1590/0102-672020180001E1397

Gazit, N., Ben-Gal, G. y Eliashar, R. (2024). Development and validation of an objective virtual reality tool for assessing technical aptitude among potential candidates for surgical training. BMC Medical Education, 24(1). https://doi.org/10.1186/S12909-024-05228-1

Ghaderi, I., Manji, F., Soo Park, Y., Juul, D., Ott, M., Harris, I. y Farrell, T. M. (2015). Technical skills assessment toolbox a review using the unitary framework of validity. Annals of Surgery, 261(2), 251–262. https://doi.org/10.1097/SLA.0000000000000520

Goff, W. M. y Getenet, S. (2017). Design-based research in doctoral studies: adding a new dimension to doctoral research. International Journal of Doctoral Studies, 12, 107–121. https://doi.org/10.28945/3761

González-López, P., Kuptsov, A., Gómez-Revuelta, C., Fernández-Villa, J., Abarca-Olivas, J., Daniel, R. T., Meling, T. R. y Nieto-Navarro, J. (2024).The integration of 3D virtual reality and 3D printing technology as innovative approaches to preoperative planning in neuro-oncology. Journal of Personalized Medicine, 14(2), 187. https://doi.org/10.3390/JPM14020187

Gurusamy, K., Aggarwal, R., Palanivelu, L. y Davidson, B. R. (2008). Systematic review of randomized controlled trials on the effectiveness of virtual reality training for laparoscopic surgery. British Journal of Surgery, 95(9), 1088–1097. https://doi.org/10.1002/bjs.6344

Hamstra, S. J., Brydges, R., Hatala, R., Zendejas, B. y Cook, D. A. (2014). Reconsidering fidelity in simulation-based training. Academic Medicine: Journal of the Association of American Medical Colleges, 89(3), 387–392. https://doi.org/10.1097/ACM.0000000000000130

Haque, S. y Srinivasan, S. (2006). A meta-analysis of the training effectiveness of virtual reality surgical simulators. IEEE Transactions on Information Technology in Biomedicine, 10(1), 51–58. https://doi.org/10.1109/TITB.2005.855529

Hennessey, I. A. y Hewett, P. (2013). Construct, concurrent, and content validity of the eoSim laparoscopic simulator. Journal of Laparoendoscopic & Advanced Surgical Techniques, 23, 855–860.

Herrington, J., Oliver, R. y Reeves, T. C. (2003). Patterns of engagement in authentic online learning environments authentic activities in learning environments. Australian Journal of Educational Technology, 19(1). Hevner, A. R. y Chatterjee, S. (2010). Design research in information systems. Theory and practice. Springer. https://doi.org/10.1007/978-1-4419-5653-8

Hevner, A. R., March, S. T., Park, J. y Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105. https://doi.org/10.2307/25148625

Issenberg, S. B., McGaghie, W. C., Hart, I. R., Mayer, J. W., Felner, J. M., Petrusa, E. R., Waugh, R. A, Brown, D. D., Safford, R. R., Gessner, I. H., Gordon, D. L. y Ewy, G. A. (1999). Simulation technology for health care professional skills training and assessment. JAMA: The Journal of the American Medical Association, 282(9), 861–866. https://doi.org/10.1001/jama.282.9.861

Izard, S. G., Torres, R. S., Plaza, Ó. A., Méndez, J. A. J. y Joségarcía-Peñalvo, F. (2020). Nextmed: automatic imaging segmentation, 3D reconstruction, and 3D model visualization platform using augmented and virtual reality. Sensors , 20(10), 2962. https://doi.org/10.3390/S20102962

Juuti, K. y Lavonen, J. (2006). Design-based research in science education: One step towards methodology. NorDiNa: Nordic Studies in Science Education, 4, 54–68. https://doi.org/10.5617/nordina.424

Karaliotas, C. (2011). When simulation in surgical training meets virtual reality. Hellenic Journal of Surgery, 83(6), 303–316. https://doi.org/10.1007/s13126-011-0055-9

Kennedy, A. M., Boyle, E. M., Traynor, O., Walsh, T. y Hill, a. D. K. (2011). Video gaming enhances psychomotor skills but not visuospatial and perceptual abilities in surgical trainees. Journal of Surgical Education, 68(5), 414–420. https://doi.org/10.1016/j.jsurg.2011.03.009

Kneebone, R. L. (2005). Evaluating clinical simulations for learning procedural skills: A theory-based approach. Academic Medicine: Journal of the Association of American Medical Colleges, 80(6), 549–553. https://doi.org/10.1097/00001888-200506000-00006

Kneebone, R. L., Scott, W., Darzi, A. y Horrocks, M. (2004). Simulation and clinical practice: Strengthening the relationship. Medical Education, 38(10), 1095–1102. https://doi.org/10.1111/j.1365-2929.2004.01959.x

Kozlowski, S. W. J. y DeShon, R. P. (2004). Scaled worlds: Development, validation, and applications. In E. Salas, L. R. Elliott, S. G. Schflett y M. D. Coovert (Eds.), A psychological fidelity approach to simulation-based training: theory, research, and principles. (pp. 75–99). Ashgate Publishing.

Krummel, T. M. (1998). Surgical simulation and virtual reality: The coming revolution. Annals of Surgery, 228(5), 635–637. https://doi.org/10.1097/00000658-199811000-00002

Kunkler, K. (2006). The role of medical simulation: An overview. International Journal of Medical Robotics and Computer Assisted Surgery, 2(3), 203–210. https://doi.org/10.1002/rcs.101

Lacerda, D. P., Dresch, Al., Proença, A. y Antunes Júnior, J. A. V. (2013). Design science research: método de pesquisa para a engenharia de produção. Gestão & Produção, 20(4), 741–761. https://doi.org/10.1590/S0104-530X2013005000014

Lamata, P., Gómez, E. J., Bello, F., Kneebone, R. L., Aggarwal, R. y Lamata, F. (2006). Conceptual framework for laparoscopic VR simulators. IEEE Computer Graphics and Applications, 26(6), 69–79. https://doi.org/10.1109/MCG.2006.125

Litynski, G. S. (1999). Profiles in laparoscopy: Mouret, Dubois, and Perissat: The laparoscopic breakthrough in Europe (1987-1988). JSLS: Journal of the Society of Laparoendoscopic Surgeons, 3(2), 163–167. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3015318/

Logishetty, K., Rudran, B. y Cobb, J. P. (2019). Virtual reality training improves trainee performance in total hip arthroplasty: A randomized controlled trial. The Bone & Joint Journal, 101-B(12), 1585–1592. https://doi.org/10.1302/0301-620X.101B12.BJJ-2019-0643.R1

Łysak, J. M., Lis, M. y Więckowski, P. R. (2023). Low-cost laparoscopic simulator - viable way of enabling access to basic laparoscopic training for medical students? The Surgeon: Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland, 21(6), 351–355. https://doi.org/10.1016/J.SURGE.2023.03.005

Maithel, S. K., Sierra, R., Korndorffer, J., Neumann, P., Dawson, S., Callery, M., Jones, D. y Scott, D. (2006). Construct and face validity of MIST-VR, Endotower, and CELTS: Are we ready for skills assessment using simulators? Surgical Endoscopy and Other Interventional Techniques, 20(1), 104–112. https://doi.org/10.1007/s00464-005-0054-4

Manson, N. (2006). Is operations research really research? ORiON, 22(2), 155-180. https://doi.org/10.5784/22-2-40

March, S. T. y Smith, G. F. (1995). Design and natural science research on information technology. Decision Support Systems, 15(4), 251–266. https://doi.org/10.1016/0167-9236(94)00041-2

Markus, M. L., A., M. y Gasser, L. (2002). A design theory for systems that support emergent knowledge processes. MIS Quarterly, 26(3), 179–212. https://www.jstor.org/stable/4132330

Matsumoto, E. D., Hamstra, S. J., Radomski, S. B. y Cusimano, M. D. (2002). The effect of bench model fidelity on endourological skills: A randomized controlled study. The Journal of Urology, 167(3), 1243–1247. https://doi.org/10.1016/S0022-5347(05)65274-3

McDougall, E. M. (2007). Validation of surgical simulators. Journal of Endourology, 21(3), 244–247. https://doi.org/10.1089/end.2007.9985

McKay, J. y Marshall, P. (2001). The dual imperatives of action research. Information Technology & People, 14(1), 46-59. doi: 10.1108/09593840110384771

Messick, S. (1989). Meaning and values in test validation: the science and ethics of assessment. Educational Researcher, 18(2), 5–11. https://doi.org/10.3102/0013189X018002005

Messick, S. (1994). The interplay of evidence and consequences in the validation of performance assessments. Educational Researcher, 23(2), 13–23. https://doi.org/10.3102/0013189X023002013

Messick, S. (1995a). Standards of validity and the validity of standards in performance assessment. Educational Measurement: Issues and Practice, 14(4), 5–8. https://doi.org/10.1111/j.1745-3992.1995.tb00881.x

Messick, S. (1995b). Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50(9), 741–749. https://doi.org/10.1037/0003-066X.50.9.741

Metcalfe, M. (2008). Pragmatic inquiry. Journal of the Operational Research Society, 59(8), 1091–1099. https://doi.org/10.1057/palgrave.jors.2602443

Moher, D., Liberati, A., Tetzlaff, J. y Altman, D. G. (2014). Preferred reporting Items for systematic reviews and meta-analyses. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.1371/journal.pmed1000097

Momand, B., Hamidi, M., Sacuevo, O. y Dubrowski, A. (2022). The application of a design-based research framework for simulation-based education. Cureus, 14(11), e31804. https://doi.org/10.7759/CUREUS.31804

Moore, M. J. y Bennett, C. L. (1995). The learning curve for laparoscopic cholecystectomy. American Journal of Surgery, 170(1), 55–59. https://doi.org/10.1016/s0002-9610(99)80252-9

Moorthy, K., Munz, Y., Sarker, S. K. y Darzi, A. (2003). Objective assessment of technical skills in surgery. British Medical Journal, 327(7422), 1032–1037. https://doi.org/10.1136/bmj.327.7422.1032

Moran-Atkin, E., Abdalla, G., Chen, G., Magnuson, T. H., Lidor, A. O., Schweitzer, M. A. y Steele, K. E. (2015). Preoperative warm-up the key to improved resident technique: a randomized study. Surgical Endoscopy, 29(5), 1057–1063. https://doi.org/10.1007/s00464-014-3778-1

Moulder, J. K., Louie, M., Toubia, T., Schiff, L. D. y Siedhoff, M. T. (2017). The role of simulation and warm-up in minimally invasive gynecologic surgery. Current Opinion in Obstetrics & Gynecology, 29(4), 212–217. https://doi.org/10.1097/GCO.0000000000000368

Mouret, P. (1996). How I developed laparoscopic cholecystectomy. Annals of the Academy of MedicineSingapore, 25(5), 744–747. http://www.ncbi.nlm.nih.gov/pubmed/8924020

Munro, M. G. (2012). Surgical simulation: where have we come from? Where are we now? Where are we going? Journal of Minimally Invasive Gynecology, 19(3), 272–283. https://doi.org/10.1016/j.jmig.2012.01.012

Noble, C. (2002). The relationship between fidelity and learning in aviation training and assessment. Journal of Air Transportation, 7(3), 33–54. https://ntrs.nasa.gov/citations/20020074981

Noureldin, Y. A., Lee, J. Y., McDougall, E. M. y Sweet, R. M. (2018). Competency-based training and simulation: making a “valid” argument. Journal of Endourology, 32(2), 84–93. https://doi.org/10.1089/end.2017.0650

Oates, B. J. (2006). Researching information systems and computing. SAGE..

Ogura, T., Sato, M., Ishida, Y., Hayashi, N. y Doi, K. (2014). Development of a novel method for manipulation of angiographic images by use of a motion sensor in operating rooms. Radiological Physics and Technology, 7(2), 228–234. https://doi.org/10.1007/s12194-014-0259-0

Papanikolaou, I. G. (2013). Assessment of medical simulators as a training programme for current surgical education. Hellenic Journal of Surgery, 85(4), 240–248. https://doi.org/10.1007/s13126-013-0047-z

Parham, G., Bing, E. G., Cuevas, A., Fisher, B., Skinner, J., Mwanahamuntu, M. y Sullivan, R. (2019). Creating a low-cost virtual reality surgical simulation to increase surgical oncology capacity and capability. Ecancer, 13 (910). https://doi.org/10.3332/ECANCER.2019.910

Park, A. y Witzke, D. B. (2002). Training and educational approaches to minimally invasive surgery: State of the art. Seminars in Laparoscopic Surgery, 9(4), 198–205. https://doi.org/10.1053/slas.2002.36468

Patil, M., Gharde, P., Reddy, K. y Nayak, K. (2024). Comparative Analysis of Laparoscopic Versus Open Procedures in Specific General Surgical Interventions. Cureus, 16(2). https://doi.org/10.7759/CUREUS.54433

Peffers, K., Tuunanen, T., Rothenberger, M. A. y Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77. https://doi.org/10.2753/MIS0742-1222240302

Pike, T. W., Pathak, S., Mushtaq, F., Wilkie, R. M., Mon-Williams, M. y Lodge, J. P. A. (2017). A systematic examination of preoperative surgery warm-up routines. Surgical Endoscopy, 31(5), 2202–2214. https://doi.org/10.1007/S00464-016-5218-X

Poulose, B. K., Vassiliou, M. C., Dunkin, B. J., Mellinger, J. D., Fanelli, R. D., Martinez, J. M., Hazey, J. W., Sillin, L. F., Delaney, C. P., Velanovich, V., Fried, G. M., Korndorffer, J. R. y Marks, J. M. (2014). Fundamentals of endoscopic surgery cognitive examination: development and validity evidence. Surgical Endoscopy , 28(2), 631–638. https://doi.org/10.1007/s00464-013-3220-0

Reeves, T. (2006). Design research from a technology perspective. In J. Van den Akker, K. Gravejeijer, S. McKenney & N. Nieveen (Eds.), Educational design research (pp. 52-66). Routledge.

Rogers, D. A., Elstein, A. S. y Bordage, G. (2001). Improving continuing medical education for surgical techniques: applying the lessons learned in the first decade of minimal access surgery. Annals of Surgery, 233(2), 159–166. https://doi.org/10.1097/00000658-200102000-00003

Rosa, G. M. y Elizondo, M. L. (2014). Use of a gesture user interface as a touchless image navigation system in dental surgery: case series report. Imaging Science in Dentistry, 44(2), 155–160. https://doi.org/10.5624/isd.2014.44.2.155

Rosser, J. C. (2007). The impact of video games on training surgeons in the 21st century. Archives of Surgery, 142(2), 181. https://doi.org/10.1001/archsurg.142.2.181

Rudran, B. y Logishetty, K. (2018). Virtual reality simulation: a paradigm shifts for therapy and medical education. British Journal of Hospital Medicine, 79(12), 666–667. https://doi.org/10.12968/hmed.2018.79.12.666

SAGES FLS Committee. (2023). Fundamentals of Laparoscopic Surgery. https://www.flsprogram.org/

Sánchez-Hurtado, M. Á., Usón-Gargallo, J., Martín-Portugués, I. D. G., Enciso, S., Sánchez-Peralta, L. F., Sánchez-Fernández, J. y Sánchez-Margallo, F. M. (2019). Validación en simulación laparoscópica. Consideraciones metodológicas y de diseño. Archivos Españoles de Urología, 72(9), 904–914. https://www.aeurologia.com/EN/Y2019/V72/I9/904

Sánchez-Margallo, J. A., Plaza de Miguel, C., Fernández Anzules, R. A. y Sánchez-Margallo, F. M. (2021). Application of Mixed Reality in Medical Training and Surgical Planning Focused on Minimally Invasive Surgery. Frontiers in Virtual Reality, 2, 692641. https://doi.org/10.3389/frvir.2021.692641

Satava, R. M. (1993). Virtual reality surgical simulator - The first steps. Surgical Endoscopy, 7(3), 203–205. https://doi.org/10.1007/BF00594110

Satava, R. M., Cuschieri, A. y Hamdorf, J. (2003). Metrics for objective assessment: Preliminary summary of the surgical skills workshop. Surgical Endoscopy, 17(2), 220–226. https://doi.org/10.1007/s00464-002-8869-8

Schijven, M. P. y Jakimowicz, J. (2002). Face, expert, and referent validity of the Xitact LS500 laparoscopy simulator. Surgical Endoscopy, 16(12), 1764–1770. https://doi.org/10.1007/s00464-001-9229-9

Schijven, M. P. y Jakimowicz, J. (2003). Virtual reality surgical laparoscopic simulators. Surgical Endoscopy, 17(12), 1943–1950. https://doi.org/10.1007/s00464-003-9052-6

Schout, B. M. A., Hendrikx, A. J. M., Scheele, F., Bemelmans, B. L. H. y Scherpbier, A. J. J. A. (2010). Validation and implementation of surgical simulators: a critical review of present, past, and future. Surgical Endoscopy, 24(3), 536–546. https://doi.org/10.1007/s00464-009-0634-9

Scott, E. E., Wenderoth, M. P. y Doherty, J. H. (2020). Design-based research: a methodology to extend and enrich biology education research. CBE Life Sciences Education, 19(3), 1–12. https://doi.org/10.1187/CBE.19-11-0245

Sewell, C., Morris, D., Blevins, N. H., Dutta, S., Agrawal, S., Barbagli, F. y Salisbury, K. (2010). Providing metrics and performance feedback in a surgical simulator. Computer Aided Surgery, 13(2), 63–81. https://doi.org/10.3109/10929080801957712

Seymour, N. E., Gallagher, A. G., Roman, S. A., O’Brien, M. K., Bansal, V. K., Andersen, D. K., Satava, R. M., Pellegrini, C. A., Sachdeva, A. K., Meakins, J. L. y Blumgart, L. H. (2002). Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Annals of Surgery, 236(4), 458. https://doi.org/10.1097/00000658-200210000-00008

Seymour, N. E. y Røtnes, J. S. (2006). Challenges to the development of complex virtual reality surgical simulations. Surgical Endoscopy , 20(11), 1774–1777. https://doi.org/10.1007/s00464-006-0107-3

Shea, B. J., Reeves, B. C., Wells, G., Thuku1, M., Hamel, C., Moran, J., Moher, D., Tugwell1, P., Welch, V., Kristjansson, E. y Henry, D. A. (2017). AMSTAR 2: a critical appraisal tool for systematic reviews that include randomized or non-randomised studies of healthcare interventions, or both. BMJ, 358:j4008. https://doi.org/10.1136/bmj.j4008

Shao, M. Y., Aburrous, M., Huson, D., Parraman, C., Hardeberg, J. Y. y Clark, J. (2023). Development and validation of a hybrid simulator for ultrasound-guided laparoscopic common bile duct exploration. Surgical Endoscopy, 37(9), 6943–6953. https://doi.org/10.1007/S00464-023-10168-W

Simon, H. A. (1969). The sciences of the artificial. The MIT Press.

Soler, L. y Marescaux, J. (2008). Patient-specific surgical simulation. World Journal of Surgery, 32(2), 208–212. https://doi.org/10.1007/s00268-007-9329-3

Soler, L., Nicolau, S., Pessaux, P., Mutter, D. y Marescaux, J. (2014). Real-time 3D image reconstruction guidance in liver resection surgery. Hepatobiliary Surgery and Nutrition, 3(2), 73–81. https://doi.org/10.3978/j.issn.2304-3881.2014.02.03

Sugden, C. y Aggarwal, R. (2010). Assessment and feedback in the skills laboratory and operating room. Surgical Clinics of North America, 90(3), 519–533. https://doi.org/10.1016/j.suc.2010.02.009

Straub, D., Boudreau, M-C., Gefen, D. (2004). Validation Guidelines for IS positivist Research. Communication of the Association for Information Systems, 13, 380-427 https://doi.org/10.17705/1CAIS.01324

Sunaert, S. (2006). Presurgical planning for tumor resectioning. Journal of Magnetic Resonance Imaging, 23(6), 887–905. https://doi.org/10.1002/JMRI.20582

Sutton, C., McCloy, R., Middlebrook, A., Chater, P., Wilson, M. y Stone, R. (1997). MIST VR. A laparoscopic surgery procedures trainer and evaluator. Studies in Health Technology and Informatics, 39, 598–607. https://IOS Press Ebooks - MISTVR, A laparoscopic Surgery Procedures Trainer and Evaluator

Sweet, R. M., Hananel, D. y Lawrenz, F. (2010). A unified approach to validation, reliability, and education study design for surgical technical skills training. Archives of Surgery, 145(2), 197–201. https://doi.org/10.1001/archsurg.2009.266

Taffinder, N., Sutton, C., Fishwick, R. J., McManus, I. C. y Darzi, A. (1998). Validation of virtual reality to teach and assess psychomotor skills in laparoscopic surgery: results from randomized controlled studies using the MIST VR laparoscopic simulator. Studies in Health Technology and Informatics, 50, 124–130. https://doi.org/10.3233/978-1-60750-894-6-124

Takeda, H., Veerkamp, P., Tomiyama, T. y Yoshikawa, H. (1990). Modeling design processes. AI Magazine, 11(4), 37–48. https://www.aaai.org/ojs/index.php/aimagazine/article/view/855/773

The Design-Based Research Collective (2003). Design-based research: an emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8. https://doi.org/10.3102/0013189X032001005The Southern Surgeons Club. (1991). A prospective analysis of 1518 laparoscopic cholecystectomies. The New England Journal of Medicine, 324(16), 1073–1078. https://doi.org/10.1056/nejm199104183241601

Torkington, J., Smith, S. G. T., Rees, B. I. y Darzi, a. (2001). Skill transfer from virtual reality to a real laparoscopic task. Surgical Endoscopy, 15(10), 1076–1079. https://doi.org/10.1007/s004640000233

Vaishnavi, V., Kuechler, B. y Petter, S. (2009). Design science research in information systems. http://www.desrist.org/design-research-in-information-systems/

Van Dongen, K. W., Verleisdonk, E. J. M. M., Schijven, M. P. y Broeders, Ivo A M. J. (2011). Will the Playstation generation become better endoscopic surgeons? Surgical Endoscopy, 25(7), 2275–2280. https://doi.org/10.1007/s00464-010-1548-2

Van Merriënboer, J. J. G. y Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147–177. https://doi.org/10.1007/s10648-005-3951-0

Van Merriënboer, J. J. G. y Sweller, J. (2010). Cognitive load theory in health professional education: design principles and strategies. Medical Education, 44(1), 85–93. https://doi.org/10.1111/j.1365-2923.2009.03498.x

Viglialoro, R. M., Condino, S., Turini, G., Carbone, M., Ferrari, V. y Gesi, M. (2021). Augmented Reality, Mixed Reality, and Hybrid Approach in Healthcare Simulation: A Systematic Review. Applied Sciences 2021, Vol. 11, Page 2338, 11(5), 2338. https://doi.org/10.3390/APP11052338

Vitari, C. y Ravarini, A. (2007). Validation of IS positivist research: an application and discussion of the Straub, Boudreau and Gefen’s guidelines. ItAIS-Italian Chapter of the Association for Information Systems Conference, 106–112. https://shs.hal.science/halshs-01924297/document

Walls, J. G., Widmeyer, G. R. y El Sawy, O. A. (1992). Building an information system design theory for vigilant EIS. Information Systems Research, 3(1), 36–59. https://doi.org/10.1287/isre.3.1.36

Wang, F. y Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development, 53(4), 5–23. https://doi.org/10.1007/BF02504682

Wanzel, K. R., Ward, M. y Reznick, R. K. (2002). Teaching the surgical craft: from selection to certification. Current Problems in Surgery, 39(6), 583–659. https://doi.org/10.1067/mog.2002.123481

Weichert, F., Bachmann, D., Rudak, B. y Fisseler, D. (2013). Analysis of the accuracy and robustness of the Leap Motion Controller. Sensors, 13(5), 6380–6393. https://doi.org/10.3390/s130506380

Wignall, G. R., Denstedt, J. D., Preminger, G. M., Cadeddu, J. A., Pearle, M. S., Sweet, R. M. y McDougall, E. M. (2008). Surgical simulation: a urological perspective. Journal of Urology, 179(5), 1690–1699. https://doi.org/10.1016/j.juro.2008.01.014

Wilson, M. S., Middlebrook, A., Sutton, C., Stone, R. y McCloy, R. F. (1997). MIST VR: A virtual reality trainer for laparoscopic surgery assesses performance. Annals of the Royal College of Surgeons of England, 79(6), 403–404. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2502952/

Wolcott, M. D., Lobczowski, N. G., Lyons, K. y McLaughlin, J. E. (2019). Design-based research: connecting theory and practice in pharmacy educational intervention research. Currents in Pharmacy Teaching and Learning, 11(3), 309–318. https://doi.org/10.1016/j.cptl.2018.12.002

Zendejas, B., Brydeges, R., Hamstra, S.J. y Cook, D.A. (2013). State of the evidence on simulation/based training for laparoscopic surgery: a systematic review. Annals of Surgery, 274(4), 586-593. https://doi.org/10.1097/SLA.0b013e318288c40b

Zendejas, B., Ruparel, R. K. y Cook, D. A. (2016). Validity evidence for the Fundamentals of Laparoscopic Surgery (FLS) program as an assessment tool: a systematic review. Surgical Endoscopy, 30(2), 512–520. https://doi.org/10.1007/s00464-015-4233-7

Ziv, A., Wolpe, P. R., Small, S. D. y Glick, S. (2003). Simulation-based medical education: an ethical imperative. Academic Medicine: Journal of the Association of American Medical Colleges, 78(8), 783–788. http://www.ncbi.nlm.nih.gov/pubmed/12915366

Ziv, A., Wolpe, P. R., Small, S. D. y Glick, S. (2006). Simulation-based medical education: an ethical imperative. Simulation in Healthcare: Journal of the Society for Simulation in Healthcare, 1(4), 252–256. https://doi.org/10.1097/01.SIH.0000242724.08501.63

Publicado
30-06-2024
Cómo citar
Álvarez López, F., Saigí Rubió, F., & Maina, M. F. (2024). Simulador de Realidad Virtual en Cirugía Mínimamente Invasiva Basado en la Ciencia del Diseño y el Marco de Validación de Messick . Revista de Educación a Distancia (RED), 24(79). https://doi.org/10.6018/red.608201