Virtual Reality Simulator in Minimally Invasive Surgery Using Design Science Research and Messick´s Validation Framework
Abstract
Minimally invasive surgery is the new surgical standard that requires the development of low-cost portable simulators to democratize training and ubiquitous learning. The study presents the development and validation of a simulator for learning basic psychomotor skills in minimally invasive surgery using a combination of Design-Based Research methodological approaches focused on learning, and Design Science Research focused on artefact development. The study was conducted in four phases. The framework proposed by Messick was used for the validation of the simulator. The successive development phases involved minimally invasive surgery experts, surgical residents, and medical students, who conducted a series of tests of the artefact to measure its effectiveness in learning psychomotor skills. The studies were based on Likert surveys and evaluation of test scores by a novice population (referent group) and an expert group. While evidence was obtained for content validity, no evidence was obtained for the relationship with other variables. Internal consistency showed good quality evidence and strong evidence was obtained for learning curve achievement among novices. The approach adopted proved to be effective in the development of accessible and effective simulators for the development of psychomotor skills in minimally invasive surgery.
Downloads
References
Abdalla, G., Moran-Atkin, E., Chen, G., Schweitzer, M. A., Magnuson, T. H. y Steele, K. E. (2015). The effect of warm-up on surgical performance: a systematic review. Surgical Endoscopy, 29(6), 1259–1269. https://doi.org/10.1007/S00464-014-3811-4
Aggarwal, R., Moorthy, K. y Darzi, A. (2004). Laparoscopic skills training and assessment. British Journal of Surgery, 91(12), 1549–1558. https://doi.org/10.1002/bjs.4816
Ahlberg, G., Heikkinen, T., Iselius, L., Leijonmarck, C. E., Rutqvist, J. y Arvidsson, D. (2002). Does training in a virtual reality simulator improve surgical performance? Surgical Endoscopy and Other Interventional Techniques, 16(1), 126–129. https://doi.org/10.1007/s00464-001-9025-6
Alvarez-Lopez, F. (2021). Uso de simulación con realidad virtual 3D mediada por gestos para el aprendizaje de destrezas psicomotoras básicas en cirugía mínimamente invasiva [Tesis doctoral, Universitat Oberta de Catalunya]. https://openaccess.uoc.edu/handle/10609/143727
Alvarez-Lopez, F., Maina, M. F., Arango, F. y Saigí-Rubió, F. (2020). Use of a low-cost portable 3D virtual reality simulator for psychomotor skill training in minimally invasive surgery: task metrics and score validity. JMIR Serious Games, 8(4), e19723. https://doi.org/https://doi.org/10.2196/11925
Alvarez-Lopez, F., Maina, M. F. y Saigí-Rubió, F. (2019). Use of commercial off-the-shelf devices for the detection of manual gestures in surgery: systematic literature review. Journal of Medical Internet Research, 21(5), 1–26. https://doi.org/10.2196/11925
Alvarez-Lopez, F., Maina, M. F. y Saigí-Rubió, F. (2020). Use of a low-cost portable 3D virtual reality gesture-mediated simulator for training and learning basic psychomotor skills in minimally invasive surgery: development and content validity study. Journal of Medical Internet Research, 22(7). https://doi.org/10.2196/17491
American Educational Research Association, American Psychological Association, y National Council on Measurement in Education. (2014). Standards for educational and psychological testing. American Educational Research Association.
American Psychological Association, American Educational Research Association, & National Council on Measurement in Education (1974). Standards for educational & psychological tests.
Archer, S. B., Brown, D. W., Smith, C. D., Branum, G. D. y Hunter, J. G. (2001). Bile duct injury during laparoscopic cholecystectomy: results of a national survey. Annals of Surgery, 234(4), 549–558; discussion 558-9. http://www.ncbi.nlm.nih.gov/pubmed/11573048
Aydin, A., Raison, N., Khan, M. S., Dasgupta, P. y Ahmed, K. (2016). Simulation-based training and assessment in urological surgery. Nature Reviews Urology, 13(9): 503–519. Nature Publishing Group. https://doi.org/10.1038/nrurol.2016.147
Bachmann, D., Weichert, F. y Rinkenauer, G. (2015). Evaluation of the leap motion controller as a new contact-free pointing device. Sensors , 15(1), 214–233. https://doi.org/10.3390/s150100214
Barab, S. (2014). Design-based research: a methodological toolkit for engineering change. In R. K. Sawyer (Ed.). The Cambridge Handbook of the Learning Sciences (3rd ed., pp. 151–170). Cambridge University Press. https://doi.org/10.1017/CBO9781139519526.011
Barab, S. y Squire, K. (2004). Design-based research: putting a stake in the ground. Journal of the Learning Sciences, 13(1), 1–14. https://doi.org/10.1207/s15327809jls1301_1
Barnes, R.W. (1987). Surgical handicraft: teaching and learning surgical skills. American Journal of Surgery, 153(5), 422–427
https://doi.org/ 10.1016/0002-9610(87)90783-5
Beckman, T. J., Cook, D. A. y Mandrekar, J. N. (2005). What is the validity evidence for assessments of clinical teaching? Journal of General Internal Medicine, 20(12), 1159–1164. https://doi.org/10.1111/J.1525-1497.2005.0258.X
Bing, E. G., Parham, G. P., Cuevas, A., Fisher, B., Skinner, J., Mwanahamuntu, M. y Sullivan, R. (2019). Using low-cost virtual reality simulation to build surgical capacity for cervical cancer treatment. Journal of Global Oncology, 5(5). https://doi.org/10.1200/JGO.18.00263
Blumenthal, D. (1994). Making medical errors into “medical treasures’’’.” JAMA, 272(23), 1867–1868. http://www.ncbi.nlm.nih.gov/pubmed/7990223
Borgersen, N. J., Naur, T. M. H., Sørensen, S. M. D., Bjerrum, F., Konge, L., Subhi, Y. y Thomsen, A. S. S. (2018). Gathering validity evidence for surgical simulation. Annals of Surgery, 267(6), 1063–1068. https://doi.org/10.1097/SLA.0000000000002652
Botden, S. y Jakimowicz, J. J. (2009). What is going on in augmented reality simulation in laparoscopic surgery? Surgical Endoscopy and Other Interventional Techniques, 23(8), 1693–1700. https://doi.org/10.1007/s00464-008-0144-1
Boyle, E., Kennedy, A. M., Traynor, O. y Hill, A. D. K. (2011). Training surgical skills using nonsurgical tasks-can Nintendo WiiTM improve surgical performance? Journal of Surgical Education, 68(2), 148–154. https://doi.org/10.1016/j.jsurg.2010.11.005
Brown, A. L. (1992). Design experiments: theoretical and methodological challenges in creating complex interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141–178. https://doi.org/10.1207/s15327809jls0202_2
Brualdi, A. (1999). Traditional and modern concepts of validity (ED435714). ERIC.https://files.eric.ed.gov/fulltext/ED435714.pdf
Carter, F. J., Schijven, M. P., Aggarwal, R., Grantcharov, T., Francis, N. K., Hanna, G. B. y Jakimowicz, J. J. (2005). Consensus guidelines for validation of virtual reality surgical simulators. Surgical Endoscopy and Other Interventional Techniques, 19(12), 1523–1532. https://doi.org/10.1007/s00464-005-0384-2
Collins, A. (1992). Toward a design science of education. In E. Scanlon, T. O’Shea (Eds.). New Directions in Educational Technology. NATO ASI Series, 96. https://doi.org/10.1007/978-3-642-77750-9_2
Cook, D. A. (2015). Much ado about differences: Why expert-novice comparisons add little to the validity argument. Advances in Health Sciences Education, 20(3), 829–834. https://doi.org/10.1007/s10459-014-9551-3
Cook, D. A., Brydges, R., Zendejas, B., Hamstra, S. J. y Hatala, R. (2013). Technology-enhanced simulation to assess health professionals: a systematic review of validity evidence, research methods, and reporting quality. Academic Medicine, 88(6), 872–883. https://doi.org/10.1097/acm.0b013e31828ffdcf
Cook, D. A., Zendejas, B., Hamstra, S. J., Hatala, R. y Brydges, R. (2014). What counts as validity evidence? Examples and prevalence in a systematic review of simulation-based assessment. Advances in Health Sciences Education, 19(2), 233–250. https://doi.org/10.1007/s10459-013-9458-4
Dawe, S. R., Pena, G. N., Windsor, J. A., Broeders, J. A. J. L., Cregan, P. C., Hewett, P. J. y Maddern, G. J. (2014). Systematic review of skills transfers after surgical simulation-based training. British Journal of Surgery, 101(9), 1063–1076. https://doi.org/10.1002/bjs.9482
Debes, A. J., Aggarwal, R., Balasundaram, I. y Jacobsen, M. B. (2010). A tale of two trainers: virtual reality versus a video trainer for acquisition of basic laparoscopic skills. American Journal of Surgery, 199(6), 840–845. https://doi.org/10.1016/j.amjsurg.2009.05.016
Deziel, D. J., Millikan, K. W., Economou, S. G., Doolas, A., Ko, S. T. y Airan, M. C. (1993). Complications of laparoscopic cholecystectomy: A national survey of 4,292 hospitals and an analysis of 77,604 cases. American Journal of Surgery, 165(1), 9–14. https://doi.org/10.1016/s0002-9610(05)80397-6
Dresch, A., Pacheco-Lacerda, D. y Valle-Antunes, J. A. J. (2015). Design science research. A method for science and technology advancement. Springer Cham. https://doi.org/10.1007/978-3-319-07374-3
Ebert, L. C., Flach, P. M., Thali, M. J. y Ross, S. (2014). Out of touch - A plugin for controlling OsiriX with gestures using the Leap Controller. Journal of Forensic Radiology and Imaging, 2(3), 126–128. https://doi.org/10.1016/j.jofri.2014.05.006
Fried, G. M. y Feldman, L. S. (2008). Objective assessment of technical performance. World Journal of Surgery, 32(2), 156–160. https://doi.org/10.1007/s00268-007-9143-y
Gaba, D. M. (2004). The future vision of simulation in health care. Quality and Safety in Health Care, 13(1), 2–10. https://doi.org/10.1136/qshc.2004.009878
Gallagher, A. G., Ritter, E. M. y Satava, R. M. (2003). Fundamental principles of validation, and reliability: Rigorous science for the assessment of surgical education and training. Surgical Endoscopy and Other Interventional Techniques, 17(10), 1525–1529. https://doi.org/10.1007/s00464-003-0035-4
Gasperin, B. D. M., Zanirati, T. y Cavazzola, L. T. (2018). Can virtual reality be as good as operating room training? Experience from a residency program in general surgery. ABCD. Arquivos Brasileiros de Cirurgia Digestiva, 31(4), e1397. https://doi.org/10.1590/0102-672020180001E1397
Gazit, N., Ben-Gal, G. y Eliashar, R. (2024). Development and validation of an objective virtual reality tool for assessing technical aptitude among potential candidates for surgical training. BMC Medical Education, 24(1). https://doi.org/10.1186/S12909-024-05228-1
Ghaderi, I., Manji, F., Soo Park, Y., Juul, D., Ott, M., Harris, I. y Farrell, T. M. (2015). Technical skills assessment toolbox a review using the unitary framework of validity. Annals of Surgery, 261(2), 251–262. https://doi.org/10.1097/SLA.0000000000000520
Goff, W. M. y Getenet, S. (2017). Design-based research in doctoral studies: adding a new dimension to doctoral research. International Journal of Doctoral Studies, 12, 107–121. https://doi.org/10.28945/3761
González-López, P., Kuptsov, A., Gómez-Revuelta, C., Fernández-Villa, J., Abarca-Olivas, J., Daniel, R. T., Meling, T. R. y Nieto-Navarro, J. (2024).The integration of 3D virtual reality and 3D printing technology as innovative approaches to preoperative planning in neuro-oncology. Journal of Personalized Medicine, 14(2), 187. https://doi.org/10.3390/JPM14020187
Gurusamy, K., Aggarwal, R., Palanivelu, L. y Davidson, B. R. (2008). Systematic review of randomized controlled trials on the effectiveness of virtual reality training for laparoscopic surgery. British Journal of Surgery, 95(9), 1088–1097. https://doi.org/10.1002/bjs.6344
Hamstra, S. J., Brydges, R., Hatala, R., Zendejas, B. y Cook, D. A. (2014). Reconsidering fidelity in simulation-based training. Academic Medicine: Journal of the Association of American Medical Colleges, 89(3), 387–392. https://doi.org/10.1097/ACM.0000000000000130
Haque, S. y Srinivasan, S. (2006). A meta-analysis of the training effectiveness of virtual reality surgical simulators. IEEE Transactions on Information Technology in Biomedicine, 10(1), 51–58. https://doi.org/10.1109/TITB.2005.855529
Hennessey, I. A. y Hewett, P. (2013). Construct, concurrent, and content validity of the eoSim laparoscopic simulator. Journal of Laparoendoscopic & Advanced Surgical Techniques, 23, 855–860.
Herrington, J., Oliver, R. y Reeves, T. C. (2003). Patterns of engagement in authentic online learning environments authentic activities in learning environments. Australian Journal of Educational Technology, 19(1). Hevner, A. R. y Chatterjee, S. (2010). Design research in information systems. Theory and practice. Springer. https://doi.org/10.1007/978-1-4419-5653-8
Hevner, A. R., March, S. T., Park, J. y Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105. https://doi.org/10.2307/25148625
Issenberg, S. B., McGaghie, W. C., Hart, I. R., Mayer, J. W., Felner, J. M., Petrusa, E. R., Waugh, R. A, Brown, D. D., Safford, R. R., Gessner, I. H., Gordon, D. L. y Ewy, G. A. (1999). Simulation technology for health care professional skills training and assessment. JAMA: The Journal of the American Medical Association, 282(9), 861–866. https://doi.org/10.1001/jama.282.9.861
Izard, S. G., Torres, R. S., Plaza, Ó. A., Méndez, J. A. J. y Joségarcía-Peñalvo, F. (2020). Nextmed: automatic imaging segmentation, 3D reconstruction, and 3D model visualization platform using augmented and virtual reality. Sensors , 20(10), 2962. https://doi.org/10.3390/S20102962
Juuti, K. y Lavonen, J. (2006). Design-based research in science education: One step towards methodology. NorDiNa: Nordic Studies in Science Education, 4, 54–68. https://doi.org/10.5617/nordina.424
Karaliotas, C. (2011). When simulation in surgical training meets virtual reality. Hellenic Journal of Surgery, 83(6), 303–316. https://doi.org/10.1007/s13126-011-0055-9
Kennedy, A. M., Boyle, E. M., Traynor, O., Walsh, T. y Hill, a. D. K. (2011). Video gaming enhances psychomotor skills but not visuospatial and perceptual abilities in surgical trainees. Journal of Surgical Education, 68(5), 414–420. https://doi.org/10.1016/j.jsurg.2011.03.009
Kneebone, R. L. (2005). Evaluating clinical simulations for learning procedural skills: A theory-based approach. Academic Medicine: Journal of the Association of American Medical Colleges, 80(6), 549–553. https://doi.org/10.1097/00001888-200506000-00006
Kneebone, R. L., Scott, W., Darzi, A. y Horrocks, M. (2004). Simulation and clinical practice: Strengthening the relationship. Medical Education, 38(10), 1095–1102. https://doi.org/10.1111/j.1365-2929.2004.01959.x
Kozlowski, S. W. J. y DeShon, R. P. (2004). Scaled worlds: Development, validation, and applications. In E. Salas, L. R. Elliott, S. G. Schflett y M. D. Coovert (Eds.), A psychological fidelity approach to simulation-based training: theory, research, and principles. (pp. 75–99). Ashgate Publishing.
Krummel, T. M. (1998). Surgical simulation and virtual reality: The coming revolution. Annals of Surgery, 228(5), 635–637. https://doi.org/10.1097/00000658-199811000-00002
Kunkler, K. (2006). The role of medical simulation: An overview. International Journal of Medical Robotics and Computer Assisted Surgery, 2(3), 203–210. https://doi.org/10.1002/rcs.101
Lacerda, D. P., Dresch, Al., Proença, A. y Antunes Júnior, J. A. V. (2013). Design science research: método de pesquisa para a engenharia de produção. Gestão & Produção, 20(4), 741–761. https://doi.org/10.1590/S0104-530X2013005000014
Lamata, P., Gómez, E. J., Bello, F., Kneebone, R. L., Aggarwal, R. y Lamata, F. (2006). Conceptual framework for laparoscopic VR simulators. IEEE Computer Graphics and Applications, 26(6), 69–79. https://doi.org/10.1109/MCG.2006.125
Litynski, G. S. (1999). Profiles in laparoscopy: Mouret, Dubois, and Perissat: The laparoscopic breakthrough in Europe (1987-1988). JSLS: Journal of the Society of Laparoendoscopic Surgeons, 3(2), 163–167. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3015318/
Logishetty, K., Rudran, B. y Cobb, J. P. (2019). Virtual reality training improves trainee performance in total hip arthroplasty: A randomized controlled trial. The Bone & Joint Journal, 101-B(12), 1585–1592. https://doi.org/10.1302/0301-620X.101B12.BJJ-2019-0643.R1
Łysak, J. M., Lis, M. y Więckowski, P. R. (2023). Low-cost laparoscopic simulator - viable way of enabling access to basic laparoscopic training for medical students? The Surgeon: Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland, 21(6), 351–355. https://doi.org/10.1016/J.SURGE.2023.03.005
Maithel, S. K., Sierra, R., Korndorffer, J., Neumann, P., Dawson, S., Callery, M., Jones, D. y Scott, D. (2006). Construct and face validity of MIST-VR, Endotower, and CELTS: Are we ready for skills assessment using simulators? Surgical Endoscopy and Other Interventional Techniques, 20(1), 104–112. https://doi.org/10.1007/s00464-005-0054-4
Manson, N. (2006). Is operations research really research? ORiON, 22(2), 155-180. https://doi.org/10.5784/22-2-40
March, S. T. y Smith, G. F. (1995). Design and natural science research on information technology. Decision Support Systems, 15(4), 251–266. https://doi.org/10.1016/0167-9236(94)00041-2
Markus, M. L., A., M. y Gasser, L. (2002). A design theory for systems that support emergent knowledge processes. MIS Quarterly, 26(3), 179–212. https://www.jstor.org/stable/4132330
Matsumoto, E. D., Hamstra, S. J., Radomski, S. B. y Cusimano, M. D. (2002). The effect of bench model fidelity on endourological skills: A randomized controlled study. The Journal of Urology, 167(3), 1243–1247. https://doi.org/10.1016/S0022-5347(05)65274-3
McDougall, E. M. (2007). Validation of surgical simulators. Journal of Endourology, 21(3), 244–247. https://doi.org/10.1089/end.2007.9985
McKay, J. y Marshall, P. (2001). The dual imperatives of action research. Information Technology & People, 14(1), 46-59. doi: 10.1108/09593840110384771
Messick, S. (1989). Meaning and values in test validation: the science and ethics of assessment. Educational Researcher, 18(2), 5–11. https://doi.org/10.3102/0013189X018002005
Messick, S. (1994). The interplay of evidence and consequences in the validation of performance assessments. Educational Researcher, 23(2), 13–23. https://doi.org/10.3102/0013189X023002013
Messick, S. (1995a). Standards of validity and the validity of standards in performance assessment. Educational Measurement: Issues and Practice, 14(4), 5–8. https://doi.org/10.1111/j.1745-3992.1995.tb00881.x
Messick, S. (1995b). Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50(9), 741–749. https://doi.org/10.1037/0003-066X.50.9.741
Metcalfe, M. (2008). Pragmatic inquiry. Journal of the Operational Research Society, 59(8), 1091–1099. https://doi.org/10.1057/palgrave.jors.2602443
Moher, D., Liberati, A., Tetzlaff, J. y Altman, D. G. (2014). Preferred reporting Items for systematic reviews and meta-analyses. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.1371/journal.pmed1000097
Momand, B., Hamidi, M., Sacuevo, O. y Dubrowski, A. (2022). The application of a design-based research framework for simulation-based education. Cureus, 14(11), e31804. https://doi.org/10.7759/CUREUS.31804
Moore, M. J. y Bennett, C. L. (1995). The learning curve for laparoscopic cholecystectomy. American Journal of Surgery, 170(1), 55–59. https://doi.org/10.1016/s0002-9610(99)80252-9
Moorthy, K., Munz, Y., Sarker, S. K. y Darzi, A. (2003). Objective assessment of technical skills in surgery. British Medical Journal, 327(7422), 1032–1037. https://doi.org/10.1136/bmj.327.7422.1032
Moran-Atkin, E., Abdalla, G., Chen, G., Magnuson, T. H., Lidor, A. O., Schweitzer, M. A. y Steele, K. E. (2015). Preoperative warm-up the key to improved resident technique: a randomized study. Surgical Endoscopy, 29(5), 1057–1063. https://doi.org/10.1007/s00464-014-3778-1
Moulder, J. K., Louie, M., Toubia, T., Schiff, L. D. y Siedhoff, M. T. (2017). The role of simulation and warm-up in minimally invasive gynecologic surgery. Current Opinion in Obstetrics & Gynecology, 29(4), 212–217. https://doi.org/10.1097/GCO.0000000000000368
Mouret, P. (1996). How I developed laparoscopic cholecystectomy. Annals of the Academy of MedicineSingapore, 25(5), 744–747. http://www.ncbi.nlm.nih.gov/pubmed/8924020
Munro, M. G. (2012). Surgical simulation: where have we come from? Where are we now? Where are we going? Journal of Minimally Invasive Gynecology, 19(3), 272–283. https://doi.org/10.1016/j.jmig.2012.01.012
Noble, C. (2002). The relationship between fidelity and learning in aviation training and assessment. Journal of Air Transportation, 7(3), 33–54. https://ntrs.nasa.gov/citations/20020074981
Noureldin, Y. A., Lee, J. Y., McDougall, E. M. y Sweet, R. M. (2018). Competency-based training and simulation: making a “valid” argument. Journal of Endourology, 32(2), 84–93. https://doi.org/10.1089/end.2017.0650
Oates, B. J. (2006). Researching information systems and computing. SAGE..
Ogura, T., Sato, M., Ishida, Y., Hayashi, N. y Doi, K. (2014). Development of a novel method for manipulation of angiographic images by use of a motion sensor in operating rooms. Radiological Physics and Technology, 7(2), 228–234. https://doi.org/10.1007/s12194-014-0259-0
Papanikolaou, I. G. (2013). Assessment of medical simulators as a training programme for current surgical education. Hellenic Journal of Surgery, 85(4), 240–248. https://doi.org/10.1007/s13126-013-0047-z
Parham, G., Bing, E. G., Cuevas, A., Fisher, B., Skinner, J., Mwanahamuntu, M. y Sullivan, R. (2019). Creating a low-cost virtual reality surgical simulation to increase surgical oncology capacity and capability. Ecancer, 13 (910). https://doi.org/10.3332/ECANCER.2019.910
Park, A. y Witzke, D. B. (2002). Training and educational approaches to minimally invasive surgery: State of the art. Seminars in Laparoscopic Surgery, 9(4), 198–205. https://doi.org/10.1053/slas.2002.36468
Patil, M., Gharde, P., Reddy, K. y Nayak, K. (2024). Comparative Analysis of Laparoscopic Versus Open Procedures in Specific General Surgical Interventions. Cureus, 16(2). https://doi.org/10.7759/CUREUS.54433
Peffers, K., Tuunanen, T., Rothenberger, M. A. y Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77. https://doi.org/10.2753/MIS0742-1222240302
Pike, T. W., Pathak, S., Mushtaq, F., Wilkie, R. M., Mon-Williams, M. y Lodge, J. P. A. (2017). A systematic examination of preoperative surgery warm-up routines. Surgical Endoscopy, 31(5), 2202–2214. https://doi.org/10.1007/S00464-016-5218-X
Poulose, B. K., Vassiliou, M. C., Dunkin, B. J., Mellinger, J. D., Fanelli, R. D., Martinez, J. M., Hazey, J. W., Sillin, L. F., Delaney, C. P., Velanovich, V., Fried, G. M., Korndorffer, J. R. y Marks, J. M. (2014). Fundamentals of endoscopic surgery cognitive examination: development and validity evidence. Surgical Endoscopy , 28(2), 631–638. https://doi.org/10.1007/s00464-013-3220-0
Reeves, T. (2006). Design research from a technology perspective. In J. Van den Akker, K. Gravejeijer, S. McKenney & N. Nieveen (Eds.), Educational design research (pp. 52-66). Routledge.
Rogers, D. A., Elstein, A. S. y Bordage, G. (2001). Improving continuing medical education for surgical techniques: applying the lessons learned in the first decade of minimal access surgery. Annals of Surgery, 233(2), 159–166. https://doi.org/10.1097/00000658-200102000-00003
Rosa, G. M. y Elizondo, M. L. (2014). Use of a gesture user interface as a touchless image navigation system in dental surgery: case series report. Imaging Science in Dentistry, 44(2), 155–160. https://doi.org/10.5624/isd.2014.44.2.155
Rosser, J. C. (2007). The impact of video games on training surgeons in the 21st century. Archives of Surgery, 142(2), 181. https://doi.org/10.1001/archsurg.142.2.181
Rudran, B. y Logishetty, K. (2018). Virtual reality simulation: a paradigm shifts for therapy and medical education. British Journal of Hospital Medicine, 79(12), 666–667. https://doi.org/10.12968/hmed.2018.79.12.666
SAGES FLS Committee. (2023). Fundamentals of Laparoscopic Surgery. https://www.flsprogram.org/
Sánchez-Hurtado, M. Á., Usón-Gargallo, J., Martín-Portugués, I. D. G., Enciso, S., Sánchez-Peralta, L. F., Sánchez-Fernández, J. y Sánchez-Margallo, F. M. (2019). Validación en simulación laparoscópica. Consideraciones metodológicas y de diseño. Archivos Españoles de Urología, 72(9), 904–914. https://www.aeurologia.com/EN/Y2019/V72/I9/904
Sánchez-Margallo, J. A., Plaza de Miguel, C., Fernández Anzules, R. A. y Sánchez-Margallo, F. M. (2021). Application of Mixed Reality in Medical Training and Surgical Planning Focused on Minimally Invasive Surgery. Frontiers in Virtual Reality, 2, 692641. https://doi.org/10.3389/frvir.2021.692641
Satava, R. M. (1993). Virtual reality surgical simulator - The first steps. Surgical Endoscopy, 7(3), 203–205. https://doi.org/10.1007/BF00594110
Satava, R. M., Cuschieri, A. y Hamdorf, J. (2003). Metrics for objective assessment: Preliminary summary of the surgical skills workshop. Surgical Endoscopy, 17(2), 220–226. https://doi.org/10.1007/s00464-002-8869-8
Schijven, M. P. y Jakimowicz, J. (2002). Face, expert, and referent validity of the Xitact LS500 laparoscopy simulator. Surgical Endoscopy, 16(12), 1764–1770. https://doi.org/10.1007/s00464-001-9229-9
Schijven, M. P. y Jakimowicz, J. (2003). Virtual reality surgical laparoscopic simulators. Surgical Endoscopy, 17(12), 1943–1950. https://doi.org/10.1007/s00464-003-9052-6
Schout, B. M. A., Hendrikx, A. J. M., Scheele, F., Bemelmans, B. L. H. y Scherpbier, A. J. J. A. (2010). Validation and implementation of surgical simulators: a critical review of present, past, and future. Surgical Endoscopy, 24(3), 536–546. https://doi.org/10.1007/s00464-009-0634-9
Scott, E. E., Wenderoth, M. P. y Doherty, J. H. (2020). Design-based research: a methodology to extend and enrich biology education research. CBE Life Sciences Education, 19(3), 1–12. https://doi.org/10.1187/CBE.19-11-0245
Sewell, C., Morris, D., Blevins, N. H., Dutta, S., Agrawal, S., Barbagli, F. y Salisbury, K. (2010). Providing metrics and performance feedback in a surgical simulator. Computer Aided Surgery, 13(2), 63–81. https://doi.org/10.3109/10929080801957712
Seymour, N. E., Gallagher, A. G., Roman, S. A., O’Brien, M. K., Bansal, V. K., Andersen, D. K., Satava, R. M., Pellegrini, C. A., Sachdeva, A. K., Meakins, J. L. y Blumgart, L. H. (2002). Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Annals of Surgery, 236(4), 458. https://doi.org/10.1097/00000658-200210000-00008
Seymour, N. E. y Røtnes, J. S. (2006). Challenges to the development of complex virtual reality surgical simulations. Surgical Endoscopy , 20(11), 1774–1777. https://doi.org/10.1007/s00464-006-0107-3
Shea, B. J., Reeves, B. C., Wells, G., Thuku1, M., Hamel, C., Moran, J., Moher, D., Tugwell1, P., Welch, V., Kristjansson, E. y Henry, D. A. (2017). AMSTAR 2: a critical appraisal tool for systematic reviews that include randomized or non-randomised studies of healthcare interventions, or both. BMJ, 358:j4008. https://doi.org/10.1136/bmj.j4008
Shao, M. Y., Aburrous, M., Huson, D., Parraman, C., Hardeberg, J. Y. y Clark, J. (2023). Development and validation of a hybrid simulator for ultrasound-guided laparoscopic common bile duct exploration. Surgical Endoscopy, 37(9), 6943–6953. https://doi.org/10.1007/S00464-023-10168-W
Simon, H. A. (1969). The sciences of the artificial. The MIT Press.
Soler, L. y Marescaux, J. (2008). Patient-specific surgical simulation. World Journal of Surgery, 32(2), 208–212. https://doi.org/10.1007/s00268-007-9329-3
Soler, L., Nicolau, S., Pessaux, P., Mutter, D. y Marescaux, J. (2014). Real-time 3D image reconstruction guidance in liver resection surgery. Hepatobiliary Surgery and Nutrition, 3(2), 73–81. https://doi.org/10.3978/j.issn.2304-3881.2014.02.03
Sugden, C. y Aggarwal, R. (2010). Assessment and feedback in the skills laboratory and operating room. Surgical Clinics of North America, 90(3), 519–533. https://doi.org/10.1016/j.suc.2010.02.009
Straub, D., Boudreau, M-C., Gefen, D. (2004). Validation Guidelines for IS positivist Research. Communication of the Association for Information Systems, 13, 380-427 https://doi.org/10.17705/1CAIS.01324
Sunaert, S. (2006). Presurgical planning for tumor resectioning. Journal of Magnetic Resonance Imaging, 23(6), 887–905. https://doi.org/10.1002/JMRI.20582
Sutton, C., McCloy, R., Middlebrook, A., Chater, P., Wilson, M. y Stone, R. (1997). MIST VR. A laparoscopic surgery procedures trainer and evaluator. Studies in Health Technology and Informatics, 39, 598–607. https://IOS Press Ebooks - MISTVR, A laparoscopic Surgery Procedures Trainer and Evaluator
Sweet, R. M., Hananel, D. y Lawrenz, F. (2010). A unified approach to validation, reliability, and education study design for surgical technical skills training. Archives of Surgery, 145(2), 197–201. https://doi.org/10.1001/archsurg.2009.266
Taffinder, N., Sutton, C., Fishwick, R. J., McManus, I. C. y Darzi, A. (1998). Validation of virtual reality to teach and assess psychomotor skills in laparoscopic surgery: results from randomized controlled studies using the MIST VR laparoscopic simulator. Studies in Health Technology and Informatics, 50, 124–130. https://doi.org/10.3233/978-1-60750-894-6-124
Takeda, H., Veerkamp, P., Tomiyama, T. y Yoshikawa, H. (1990). Modeling design processes. AI Magazine, 11(4), 37–48. https://www.aaai.org/ojs/index.php/aimagazine/article/view/855/773
The Design-Based Research Collective (2003). Design-based research: an emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8. https://doi.org/10.3102/0013189X032001005The Southern Surgeons Club. (1991). A prospective analysis of 1518 laparoscopic cholecystectomies. The New England Journal of Medicine, 324(16), 1073–1078. https://doi.org/10.1056/nejm199104183241601
Torkington, J., Smith, S. G. T., Rees, B. I. y Darzi, a. (2001). Skill transfer from virtual reality to a real laparoscopic task. Surgical Endoscopy, 15(10), 1076–1079. https://doi.org/10.1007/s004640000233
Vaishnavi, V., Kuechler, B. y Petter, S. (2009). Design science research in information systems. http://www.desrist.org/design-research-in-information-systems/
Van Dongen, K. W., Verleisdonk, E. J. M. M., Schijven, M. P. y Broeders, Ivo A M. J. (2011). Will the Playstation generation become better endoscopic surgeons? Surgical Endoscopy, 25(7), 2275–2280. https://doi.org/10.1007/s00464-010-1548-2
Van Merriënboer, J. J. G. y Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147–177. https://doi.org/10.1007/s10648-005-3951-0
Van Merriënboer, J. J. G. y Sweller, J. (2010). Cognitive load theory in health professional education: design principles and strategies. Medical Education, 44(1), 85–93. https://doi.org/10.1111/j.1365-2923.2009.03498.x
Viglialoro, R. M., Condino, S., Turini, G., Carbone, M., Ferrari, V. y Gesi, M. (2021). Augmented Reality, Mixed Reality, and Hybrid Approach in Healthcare Simulation: A Systematic Review. Applied Sciences 2021, Vol. 11, Page 2338, 11(5), 2338. https://doi.org/10.3390/APP11052338
Vitari, C. y Ravarini, A. (2007). Validation of IS positivist research: an application and discussion of the Straub, Boudreau and Gefen’s guidelines. ItAIS-Italian Chapter of the Association for Information Systems Conference, 106–112. https://shs.hal.science/halshs-01924297/document
Walls, J. G., Widmeyer, G. R. y El Sawy, O. A. (1992). Building an information system design theory for vigilant EIS. Information Systems Research, 3(1), 36–59. https://doi.org/10.1287/isre.3.1.36
Wang, F. y Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development, 53(4), 5–23. https://doi.org/10.1007/BF02504682
Wanzel, K. R., Ward, M. y Reznick, R. K. (2002). Teaching the surgical craft: from selection to certification. Current Problems in Surgery, 39(6), 583–659. https://doi.org/10.1067/mog.2002.123481
Weichert, F., Bachmann, D., Rudak, B. y Fisseler, D. (2013). Analysis of the accuracy and robustness of the Leap Motion Controller. Sensors, 13(5), 6380–6393. https://doi.org/10.3390/s130506380
Wignall, G. R., Denstedt, J. D., Preminger, G. M., Cadeddu, J. A., Pearle, M. S., Sweet, R. M. y McDougall, E. M. (2008). Surgical simulation: a urological perspective. Journal of Urology, 179(5), 1690–1699. https://doi.org/10.1016/j.juro.2008.01.014
Wilson, M. S., Middlebrook, A., Sutton, C., Stone, R. y McCloy, R. F. (1997). MIST VR: A virtual reality trainer for laparoscopic surgery assesses performance. Annals of the Royal College of Surgeons of England, 79(6), 403–404. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2502952/
Wolcott, M. D., Lobczowski, N. G., Lyons, K. y McLaughlin, J. E. (2019). Design-based research: connecting theory and practice in pharmacy educational intervention research. Currents in Pharmacy Teaching and Learning, 11(3), 309–318. https://doi.org/10.1016/j.cptl.2018.12.002
Zendejas, B., Brydeges, R., Hamstra, S.J. y Cook, D.A. (2013). State of the evidence on simulation/based training for laparoscopic surgery: a systematic review. Annals of Surgery, 274(4), 586-593. https://doi.org/10.1097/SLA.0b013e318288c40b
Zendejas, B., Ruparel, R. K. y Cook, D. A. (2016). Validity evidence for the Fundamentals of Laparoscopic Surgery (FLS) program as an assessment tool: a systematic review. Surgical Endoscopy, 30(2), 512–520. https://doi.org/10.1007/s00464-015-4233-7
Ziv, A., Wolpe, P. R., Small, S. D. y Glick, S. (2003). Simulation-based medical education: an ethical imperative. Academic Medicine: Journal of the Association of American Medical Colleges, 78(8), 783–788. http://www.ncbi.nlm.nih.gov/pubmed/12915366
Ziv, A., Wolpe, P. R., Small, S. D. y Glick, S. (2006). Simulation-based medical education: an ethical imperative. Simulation in Healthcare: Journal of the Society for Simulation in Healthcare, 1(4), 252–256. https://doi.org/10.1097/01.SIH.0000242724.08501.63
Copyright (c) 2024 Distance Education Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.