Neuromodulation applied in the dorsolateral prefrontal cortex increases hip range of motion: a randomized controlled study

Um estudo controlado randomizado.

Authors

DOI: https://doi.org/10.6018/cpd.613071
Keywords: Flexibility, tDCS, range of motion, dorsolateral prefrontal cortex

Abstract

The study investigated the impact of anodal transcranial direct current stimulation (a-tDCS) on hip range of motion (HROM) in recreationally trained men. Secondarily, pain perception was assessed. 20 men (23.3 ± 5.2 years), with a left HROM of 113.9° and a right HROM of 111.5°, were divided into two groups: a-tDCS and sham-tDCS. Over three visits, anthropometry and passive HROM assessments were assessed. The respective stimulations were applied at the following two visits and HROM was measured before and after each session. ANOVA showed a significant increase in HROM in the a-tDCS group in both the left (p = .01) and right (p = .014) legs, while sham-tDCS showed no change. Pain perception was maximum in all conditions. a-tDCS stimulation was shown to improve HROM in recreationally trained men, however, pain perception was not altered.

Downloads

Download data is not yet available.

Author Biography

Sérgio Machado, Graduate Program at the Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ; Neuroscience Research Center, Neurodiversity Institute, Queimados, RJ

Sergio Machado es licenciado en Educación Física por la Universidad Estácio de Sá (2005). Máster, Doctorado y Postdoctorado en Salud Mental por el Instituto de Psiquiatría (IPUB) de la Universidad Federal de Río de Janeiro (UFRJ) en 2008, 2012 y 2013-2014. Post-doctorado en Neurofilosofía por la Universidad Federal de Uberlândia (UFU) en 2012-2013 y en Neurociencia de la Actividad Física por el Instituto Nacional de Ciencia y Tecnología Traslacional en Medicina (INCT-TM) en 2014. Doctorado en curso en Ciencias del Deporte por Universidad de Beira Interior (UBI - Portugal). Licenciando en Psicología en la Universidad Estácio de Sá, interrumpido en 2018.1. Tiene experiencia en las áreas de salud mental, psicofisiología, neuropsicología, fisiología del ejercicio clínico y neurociencia de la actividad física. Es investigador en el Laboratorio de Pánico y Respiración (UFRJ) y Profesor Permanente del Programa de Posgrado en Ciencias de la Actividad Física de la Universidad Salgado de Oliveira, coordinando el Laboratorio de Neurociencia de la Actividad Física. Sus intereses de investigación son los aspectos biológicos de la actividad física y el ejercicio físico en las dimensiones de prevención, rehabilitación y prescripción de ejercicios, en la perspectiva de la promoción de la salud y el rendimiento humano. Más específicamente, investiga los efectos agudos y crónicos del entrenamiento de fuerza, aeróbico, flexibilidad y neuromotor en la actividad cerebral, aspectos conductuales, psicofisiológicos, neuropsicológicos y de calidad de vida en sujetos sanos (niños/adolescentes, adultos y ancianos) y en pacientes con enfermedades neurológicas y trastornos psiquiátricos. Es investigador invitado de instituciones internacionales, como Universidad de Cagliari (Italia), Universidad Regensburg (Alemania) y Universidad Anahuac Mayab (México). Es editor asociado de revistas internacionales (Frontiers in Psychology, Frontiers in Psychiatry, Cuadernos de Psicologia del Deporte, The Open Sports Science Journal, CNS Neurological Disorders Drug Targets y Clinical Practice and Epidemioloy in Mental Health) y revisor de varias revistas nacionales e internacionales. Actualmente es un joven científico de la Fundación para el Apoyo a la Investigación del Estado de Río de Janeiro (FAPERJ) – Brasil.

References

Antal, A., Luber, B., Brem, A. K., Bikson, M., Brunoni, A. R., Cohen Kadosh, R., . . . Paulus, W. (2022). Non-invasive brain stimulation and neuroenhancement. Clinical Neurophysioly Practice, 7, 146-165. https://doi.org/10.1016/j.cnp.2022.05.002

Boggio, P. S., Zaghi, S., Lopes, M. & Fregni, F. (2008). Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. European Journal of Neurology, 15(10), 1124-1130. https://doi.org/10.1111/j.1468-1331.2008.02270.x

Cejudo, A., Sainz de Barranda, P., Ayala, F., & Santonja, F. (2013). Fiabilidad absoluta de 2 pruebas de valoración del rango de movimiento del tobillo en jugadores de balonmano. Cuadernos de Psicología del Deporte, 12(2), 23–30. https://doi.org/10.6018/280391

DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. JoVe Journal, (51). https://doi.org/10.3791/2744

Dixon, J. S., & Bird, H. A. (1981). Reproducibility along a 10 cm vertical visual analogue scale. Ann Rheum Dis, 40(1), 87-89. https://doi.org/10.1136/ard.40.1.87

Florêncio, L. L., Pereira, P. A., Silva, E. R. T., Pegoretti, K. S., Gonçalves, M. C., & Grossi, D. B. (2010). Agreement and reliability of two non-invasive methods for assessing cervical range of motion among young adults. Brazilian Journal of Physical Therapy, 14(2), 175-181. https://doi.org/https://doi.org/10.1590/S1413-35552010005000011

Henriques, I. A. D., Lattari, E., Torres, G., Rodrigues, G. M., Oliveira, B. R. R., Neto, G. A. M., . . . Machado, S. (2019). Can transcranial direct current stimulation improve range of motion and modulate pain perception in healthy individuals? Neurosci Lett, 707, 134311. https://doi.org/10.1016/j.neulet.2019.134311

Klem, G. H., Luders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl, 52, 3-6. https://www.ncbi.nlm.nih.gov/pubmed/10590970

Lins, V., Lattari, E., Monteiro, D., Cid, L., & Albuquerque, G. M. N. (2020). Effects of transcranial direct current stimulation on joint flexibility and pain in sedentary male individuals. Science & Sports, 35(3), 137-144. https://doi.org/doi.org/10.1016/j.scispo.2019.01.005

Lattari, E., Andrade, M. L., Sá Filho, A., Moura, A., Maranhão Neto, G., Silva, J. G., Rocha, N. B., Yuan, T., Arias-Carrión, O., & Machado, S. (2016). Can Transcranial Direct Current Stimulation Improve the Resistance Strength and Decrease the Rating Perceived Scale in Recreational Weight-Training Experience? The Journal of Strength & Conditioning Research, 30(12):3381-3387. https://doi.org/doi.org/10.1519/JSC.0000000000001457

Malta, M., Cardoso, L. O., Bastos, F. I., Magnanini, M. M., & Silva, C. M. (2010). STROBE initiative: guidelines on reporting observational studies. Revista Saude Publica, 44(3), 559-565. https://doi.org/10.1590/s0034-89102010000300021

Machado, S., Maciel de Lima, J. L., Lana, W., Serrano, R., Gomes dos Santos, Y., Marques Neto, S. R., … Cid, L. (2019). Estimulación transcraneal de corriente continua anódica como potencial recurso ergogénico para fuerza muscular y percepción de esfuerzo: una revisión crítica. Cuadernos de Psicología del Deporte, 19(3), 216–242. https://doi.org/10.6018/cpd.373431

Martínez-Sanz, J., Mielgo Ayuso, J., & Janci-Irigoyen, J. (2013). Estudio de la composición corporal en deportistas masculinos universitarios de diferentes disciplinas deportivas. Cuadernos de Psicología del Deporte, 12(2), 89–94.

McMorris, T. (2021). The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. International Journal of Psychophysiology, 170, 75-88. https://doi.org/10.1016/j.ijpsycho.2021.10.005

Mizuno, T., & Aramaki, Y. (2017). Cathodal transcranial direct current stimulation over the Cz increases joint flexibility. Neuroscience Research, 114, 55-61. https://doi.org/10.1016/j.neures.2016.08.004

Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527, Pt 3, 633-639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x

Pageaux, B. (2014). The psychobiological model of endurance performance: an effort-based decision-making theory to explain self-paced endurance performance. Sports Med, 44(9), 1319-1320. https://doi.org/10.1007/s40279-014-0198-2

Robertson, C. V., & Marino, F. E. (2016). A role for the prefrontal cortex in exercise tolerance and termination. Journal of Application Physiology, 120(4), 464-466. https://doi.org/10.1152/japplphysiol.00363.2015

Rodrigues, G. M., Lattari, E., Oliveira, F., Oliveira, B. R. R., & Machado, S. (2022). Effects of cathodal transcranial direct current stimulation on hip range of motion of healthy sedentary women: A crossover study. Neuroscience Letters, 788, 136843. https://doi.org/10.1016/j.neulet.2022.136843

Rosenthal, J. A. (1996). Qualitative Descriptors of Strength of Association and Effect Size. Journal of Social Service Research, 21(4), 37-59. https://doi.org/doi: 10.1300/J079v21n04_02

Stewart, A., Marfeell-Jones, M., Olds, T., & Ridder, H., D. (2011). International Society for Advancement of Kinanthropometry. In L. H. International Society for the Advancement of Kinanthropometry, New Zealand, Ed. 3.

Støve, M. P., Hirata R. P., & Palsson, T. S. (2021) The tolerance to stretch is linked with endogenous modulation of pain. Scandinavian Journal of Pain, 21(2), 355–363. https://doi.org/10.1515/sjpain-2020-0010

Wilkins, L. W. (2017). ACSM’s Health-related Physical Fitness Assessment (5 ed.).

Published
24-01-2025
How to Cite
Inacio, P. A., Siqueira, J. P., Sales, M. M., Silva, W. A., Leonardo, P. S., Portugal, E. M., … Sá Filho, A. S. (2025). Neuromodulation applied in the dorsolateral prefrontal cortex increases hip range of motion: a randomized controlled study: Um estudo controlado randomizado. Sport Psychology Notebooks, 25(1), 242–256. https://doi.org/10.6018/cpd.613071
Issue
Section
Ciencias del Deporte

Most read articles by the same author(s)

1 2 > >>