The use of social robots as teaching assistants in schools: implications for research and practice

Authors

DOI: https://doi.org/10.6018/red.600771
Keywords: social robot, education, schools, student robot interaction

Abstract

In social robots, AI has been seamlessly integrated to enable them to be programmed to perform a wide range of tasks, from basic movements and interactions to more complex functions, such as assisting in education. This comprehensive review delves into the multifaceted use of social robots in primary and secondary education, addressing key aspects such as trends, theoretical foundations, application domains, and ethical considerations. Guided by four primary research questions, the study reveals notable trends, with the NAO robot emerging prominently in educational settings, particularly among primary school-age children. Application domains explored include language learning, computational thinking, social and emotional development, creativity support, musical instrument practice, and library activities, showcasing the diverse roles social robots play as teaching assistants, peers, and companions. However, ethical concerns and data privacy issues surface, posing risks such as transparency issues, dependency on robots, reduced human interaction, and potential job displacement. The study stresses the need for extensive longitudinal studies and collaborative efforts to responsibly integrate social robots into education, emphasizing the necessity for collaboration among educators, policymakers, developers, and privacy experts to establish clear guidelines prioritizing students' well-being

Downloads

Download data is not yet available.

References

Ahumada-Newhart, V., Schneider, M., & Riek, L. D. (2023). The Power of Robot-mediated Play: Forming Friendships and Expressing Identity. ACM transactions on human-robot interaction, 12(4), 1-21., doi: 10.1145/3611656

Ali, S., Devasia, N., Park, H. W., & Breazeal, C. (2021). Social robots as creativity eliciting agents. Frontiers in Robotics and AI, 8, 673730., doi: 10.3389/frobt.2021.673730

Andreza, Karine, de, Barros, Almeida, Souto. (2023). Towards social generative AI for education: theory, practices and ethics. doi: 10.48550/arxiv.2306.10063

Ao, Y., & Yu, Z. (2022). Exploring the relationship between interactions and learning performance in robot-assisted language learning. Education Research International, 2022., doi: 10.1155/2022/1958317

Arar, C., Belazoui, A., Telli, A., (2021). Adoption of social robots as pedagogical aids for efficient learning of second language vocabulary to children. Journal of e Learning and Knowledge Society 17 (3), 119. – 126., doi: 10.20368/19718829/1135551

Atman Uslu, N., Yavuz, G. Ö., & Koçak Usluel, Y. (2023). A systematic review study on educational robotics and robots. Interactive Learning Environments, 31(9), 5874–5898. https://doi.org/10.1080/10494820.2021.2023890

Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social robots for education: A review. Science Robotics, 3, 1-9.

van den Berghe, R., de Haas, M., Oudgenoeg‐Paz, O., Krahmer, E., Verhagen, J., Vogt, P., ... & Leseman, P. (2021). A toy or a friend? children's anthropomorphic beliefs about robots and how these relate to second‐language word learning. Journal of Computer Assisted Learning, 37(2), 396-410., doi: 10.1111/jcal.12497

Boch, A., Lucaj, L., & Corrigan, C. (2020). A robotic new hope: Opportunities, challenges, and ethical considerations of social robots. Technical University of Munich, 1-12.

Boland, A., Cherry, G., & Dickson, R. (2017). Doing a Systematic Review: A Student’s Guide. Sage.

Bonaiuti, G., Campitiello, L., Di Tore, S., & Marras, A. (2022, October). Educational robotics studies in Italian scientific journals: A systematic review. In Frontiers in Education (Vol. 7, p. 1005669). Frontiers. doi: 10.3389/feduc.2022.1005669

Budgen, D., Brereton, P., Drummond, S., & Williams, N. (2018). Reporting systematic reviews: Some lessons from a tertiary study. Information and Software Technology, 95, 62–74. https://doi.org/10.1016/j.infsof.2017.10.017

Chalmers, C., Keane, T, Boden, M, & Williams, M. (2022). Humanoid robots go to school. Education and Information Technologies (2022) 27:7563–7581, doi: 10.1007/s10639-022-10913-z

Chen, H., Park, H. W., & Breazeal, C., (2020). Teaching and learning with children: Impact of reciprocal peer learning with a social robot on child learning and emotional engagement. Computers & Education (2020), doi: 10.1016/j.compedu.2020.103836.

Chou, H. S., Thong, L. T., Chew, H. S. J., & Lau, Y. (2023). Barriers and Facilitators of Robot-Assisted Education in Higher Education: A Systematic Mixed-Studies Review. Technology, Knowledge and Learning, 1-40., doi: 10.1007/s10758-022-09637-3

Connolly, C., Walsh, J. C., Worlikar, H., Ryan, L., Murray, A., O’Connor, S., Kelly, J., Coleman, S., Vadhira, V. V., Newell, E., & O‘Keeffe, D. T., (2022) Exploring new frontiers of education using humanoid robots – a case study of patient centred innovation in digital health education, Irish Educational Studies, 41:1, 107-115, doi: 10.1080/03323315.2021.2022514

Demir-Lira, Ö. E., Kanero, J., Oranç, C., Koskulu, S., Franko, I., Göksun, T. & Küntay, A. C., (2020). L2 Vocabulary Teaching by Social Robots: The Role of Gestures and On-Screen Cues as Scaffolds. Front. Educ. 5:599636., doi: 10.3389/feduc.2020.599636

Donnermann, M., Schaper, P., & Lugrin, B. (2020). Integrating a social robot in higher education–a field study. In Proceeding of the 29th IEEE International Conference on Robot and Human Interactive Communication (pp. 573–579). IEEE. doi: 10.1109/RO-MAN47096.2020.9223602

Ekström, S. & Pareto L. (2022). The dual role of humanoid robots in education: As didactic tools and social actors. Education and Information Technologies (2022) 27:12609–12644. doi: 10.1007/s10639-022-11132-2

Escobar-Planas, M., Charisi, V., and Gómez, E. (2022.) “That Robot Played with Us!” Children’s Perceptions of a Robot after a Child-Robot Group Interaction. Proc. ACM Hum.-Comput. Interact. 6, CSCW2, Article 393 (November 2022), 23 pages. doi: 10.1145/3555118

Guggemos, J., Seufert, S., & Sonderegger, S., (2020), Humanoid robots in higher education: Evaluating the acceptance of Pepper in the context of an academic writing course using the UTAUT, British Journal of Educational Technology, 51(5), 1864-1883., doi: 10.1111/bjet.13006

Kalaitzidou, M., Pachidis, T.P. (2023). Recent Robots in STEAM Education. Educ. Sci. 13, 272. doi: 10.3390/educsci13030272

Keane, T., Chalmers, C., Boden, M., & Williams, M. (2019). Humanoid robots: Learning a programming language to learn a traditional language. Technology, Pedagogy and Education, 28(5), 533-546., doi: 10.1080/1475939X.2019.1670248

Kim, Y., Marx, S., Pham, H. V., & Nguyen, T. (2021). Designing for robot-mediated interaction among culturally and linguistically diverse children. Educational Technology Research and Development, 69, 3233-3254., doi: 10.1007/s11423-021-10051-2

Kim, Y., Hwang, J., Lim, S., Cho, M. H., & Lee, S. (2023). Child–robot interaction: designing robot mediation to facilitate friendship behaviors. Interactive Learning Environments, 1-14., doi: 10.1080/10494820.2023.2194936

Ko'kiyev, Boburmirzo, Baxodir, o'g'li. (2023). Toward a longitudinal program of in situ social robotics research and informal steam education. doi: 10.37099/mtu.dc.etdr/1561

Konijn, E.A. & Hoorn, J.F., (2020). Robot tutor and pupils’ educational ability: Teaching the times tables, Computers & Education (2020), doi: 10.1016/j.compedu.2020.103970.

Kubilinskiene, S., Zilinskiene, I., Dagiene, V., & Sinkevièius, V. (2017). Applying robotics in school education: A systematic review. Baltic Journal of Modern Computing, 5, 50. doi: 10.22364/bjmc.2017.5.1.04

Leitão, R., Maguire, M., Turner, S., Guimarães, L. (2022): A systematic evaluation of game elements effects on students’ motivation, Education and Information Technologies (2022) 27:1081–1103, doi: 10.1007/s10639-021-10651-8

LeTendre, G. K., & Gray, R. (2023). Social robots in a project‐based learning environment: Adolescent understanding of robot–human interactions. Journal of Computer Assisted Learning., doi: 10.1111/jcal.12872

Lorenzo, G., Lledó, A., Pérez-Vázquez, E., & Lorenzo-Lledó, A. (2021). Action protocol for the use of robotics in students with Autism Spectrum Disoders: A systematic-review. Education and Information Technologies, 26, 4111-4126. doi.org/10.1007/s10639-021-10464-9

Martinez-Roig, R., Cazorla, M., & Esteve Faubel, J. M. (2023). Social robotics in music education: A systematic review. In Frontiers in Education (Vol. 8, p. 1164506). Frontiers., doi: 10.3389/feduc.2023.1164506

Newton, D. P., & Newton, L. D. (2019). Humanoid robots as teachers and a proposed code of practice. In Frontiers in education (Vol. 4, p. 125). Frontiers Media SA., doi: 10.3389/feduc.2019.00125

Osawa, H., Horino, K., & Sato, T. (2022). Social agents as catalysts: Social dynamics in the classroom with book introduction robot. Frontiers in Robotics and AI, 9, 934325., doi: 10.3389/frobt.2022.934325

Papadopoulos, I., Lazzarino, R., Miah, S., Weaver, T., Thomas, B., & Koulouglioti, C. (2020). A systematic review of the literature regarding socially assistive robots in pre-tertiary education. Computers & Education, 155, 103924., doi.org/10.1016/j.compedu.2020.103924

Peura, L., Mutta, M., & Johansson, M. (2023). Playing with Pronunciation: A study on robot-assisted French pronunciation in a learning game. Nordic Journal of Digital Literacy, (2), 100-115., doi: 10.18261/njdl.18.2.3

Qu, J. R., & Fok, P. K. (2021). Cultivating students’ computational thinking through student–robot interactions in robotics education. International Journal of Technology and Design Education, 1-20., doi: 10.1007/s10798-021-09677-3

Research and Markets (2018). Educational Robots Market by Component (Hardware and Software), Type (Humanoid and Non-Humanoid), Education Level (Elementary and High School Education, Higher Education, and Special Education), and Geography - Global Forecast to 2023. Accessible at: https://www.marketsandmarkets.com/Market-Reports/educational-robot-market-28174634.html

Rojas-López, A., Rincón-Flores, E. G., Mena, J., García-Peñalvo, F. G., Ramírez-Montoya, M. S. (2019): Engagement in the course of programming in higher education through the use of gamification, Universal Access in the Information Society, doi: 10.1007/s10209-019-00680-z

Sannicandro, K., De Santis, A., Bellini, C., & Minerva, T. (2022). A scoping review on the relationship between robotics in educational contexts and e-health. In Frontiers in Education (Vol. 7, p. 955572). Frontiers., 10.3389/feduc.2022.955572

Sayed, Fayaz, Ahmad., Mohd, Khairil, Rahmat., Muhammad, Shujaat, Mubarik., Muhammad, Alam., Syed, Irfan, Hyder. (2021). Artificial Intelligence and Its Role in Education. Sustainability, doi: 10.3390/SU132212902

Serholt, S. (2019). Interactions with an empathic robot tutor in education: students’ perceptions three years later. Artificial Intelligence and Inclusive Education: Speculative Futures and Emerging Practices, 77-99., doi: 10.1007/978-981-13-8161-4_5

Serholt, S., Ekström, S., Küster, D., Ljungblad, S., & Pareto, L. (2022). Comparing a robot tutee to a human tutee in a learning-by-teaching scenario with children. Frontiers in Robotics and AI, 9, 836462., doi: 10.3389/frobt.2022.836462

Sisman, B., Gunay D. & Kucuk S. (2018). Development and validation of an educational robot attitude scale (ERAS) for secondary school students, Interactive Learning Environments, doi: 10.1080/10494820.2018.1474234

Song, H., Barakova, E. I., Markopoulos, P., & Ham, J. (2021). Personalizing hri in musical instrument practicing: The influence of robot roles (evaluative versus nonevaluative) on the child’s motivation for children in different learning stages. Frontiers in Robotics and AI, 8, 699524., doi: 10.3389/frobt.2021.699524

de Souza Jeronimo, B., de Albuquerque Wheler, A. P., de Oliveira, J. P. G., Melo, R., Bastos-Filho, C. J., & Kelner, J. (2022). Comparing Social Robot Embodiment for Child Musical Education. Journal of Intelligent & Robotic Systems, 105(2), 28., doi: 10.1007/s10846-022-01604-5

van Straten, C. L., Peter, J., & Kühne, R. (2023). Transparent robots: How children perceive and relate to a social robot that acknowledges its lack of human psychological capacities and machine status. International Journal of Human-Computer Studies, 177, 103063., doi: 10.1016/j.ijhcs.2023.103063

Subramanian, Ramesh (2017) "Emergent AI, Social Robots and the Law: Security, Privacy and Policy Issues," Journal of International Technology and Information Management: Vol. 26 : Iss. 3 , Article 4.

Tariq, Iqbal. (2023). Embodied AI for Financial Literacy Social Robots. doi: 10.1109/SIEDS58326.2023.10137791

Tolksdorf, N. F., Crawshaw, C. E. & Rohlfing, K. J. (2021). Comparing the Effects of a Different Social Partner (Social Robot vs. Human) on Children’s Social Referencing in Interaction. Front. Educ. 5:569615. doi: 10.3389/feduc.2020.569615

Velentza, A. M., Fachantidis, N., & Lefkos, I. (2021). Learn with surprize from a robot professor, Computers & Education, (2021), doi: 10.1016/j.compedu.2021.104272

Wieringa, R., Maiden, N., Mead, N., & Rolland, C. (2005). Requirements engineering paper classification and evaluation criteria: A proposal and a discussion. Requirements Engineering, 11(1), 102–107. doi.org/10.1007/s00766-005-0021-6

Woo, H., LeTendre, G. K., Pham-Shouse, T., & Xiong, Y. (2021). The use of social robots in classrooms: A review of field-based studies. Educational Research Review, 33, 100388.,doi.org/10.1016/j.edurev.2021.100388

Yueh, H. P., Lin, W., Wang, S. C., & Fu, L. C. (2020). Reading with robot and human companions in library literacy activities: A comparison study. British Journal of Educational Technology, 51(5), 1884-1900., doi: 10.1111/bjet.13016

Zhexenova, Z., Amirova, A., Abdikarimova, M., Kudaibergenov, K., Baimakhan, N., Tleubayev, B., ... & Sandygulova, A. (2020). A comparison of social robot to tablet and teacher in a new script learning context. Frontiers in Robotics and AI, 7, 99., doi: 10.3389/frobt.2020.00099

Published
30-05-2024
How to Cite
Ružić, I., & Balaban, I. (2024). The use of social robots as teaching assistants in schools: implications for research and practice. Distance Education Journal, 24(78). https://doi.org/10.6018/red.600771