Customisation of a diagnostic and feedback process for the development of intermediate algebra competences

Authors

DOI: https://doi.org/10.6018/red.525741
Keywords: Adaptive learning, Competences, Higher education, Performance assessment, Personalisation

Supporting Agencies

  • This work has not received any specific grants from funding agencies in the public, commercial or non-profit sectors. funding bodies in the public, commercial or non-profit sectors.

Abstract

Although there is a long way to go in terms of the application of Personalised Learning and Adaptive Learning in higher education, it has been found that the delivery of personalised trajectories remains an area of opportunity for both institutions and educators. The focus of the present study was on the enrichment of personal learning environments. That is, how a diagnostic test, with an adaptive approach, contributes to the determination of personalised learning trajectories, applied for the purpose of teaching and learning algebra in undergraduate studies. An exploratory case study was chosen, with the participation of three teachers with experience in algebra at a higher level and ten students enrolled in the intermediate algebra course at a higher education institution in southeastern Mexico. To give voice to each participant, a semi-structured interview was applied after the implementation of the test. And the MOODLE Lesson tool was used for the application of the diagnostic instrument. The results indicate that the diagnostic test made it possible to measure the student's knowledge and level of performance, thus helping to identify prior knowledge in a timelier manner and, with this, to refine or improve personalised instruction.

Downloads

Download data is not yet available.

References

Alade, O. M., & Omoruyi, I. V. (2014). Table of Specification and Its Relevance in Educational Development Assessment. European Journal of Educational and Development Psychology, 2(1), 1–17.

Alamri, H., Lowell, V., Watson, W., & Watson, S. L. (2020). Using personalized learning as an instructional approach to motivate learners in online higher education: Learner self-determination and intrinsic motivation. Journal of Research on Technology in Education, 52(3), 322–352. https://doi.org/10.1080/15391523.2020.1728449

Attwell, G. (2007). Personal Learning Environments - the future of eLearning ? Lifelong Learning, 2(January), 1–8. http://www.elearningeuropa.info/files/media/media11561.pdf

Ávila Clemente, V., Gil Pelluch, L., Gilabert, R., Maña, A., & Vidal-Abarca Gamez, E. (2016). ‘Método de Evaluación Dinámica Automatizado’ de Competencias Lectoras para Educación Secundaria. (EdiLEC). Universitas Psychologica, 15(1). https://doi.org/10.11144/Javeriana.upsy15-1.meda

Baxter, P. and Jack, S. (2008) Qualitative Case Study Methodology: Study Design and Implementation for Novice Researchers. The Qualitative Report, 13, 544-559.

Beltran Prieto Figueroa, L., Mosquera Uzcátegui José Lisandro Aguilar, D., & Diego Mosquera Uzcátegui José Lisandro Aguilar, A. (2019). DE BARQUSIMETO ECO-CONECTIVISMO: MODELANDO EL CONOCIMIENTO CONECTIVO P 158 REVISTA ECO-CONECTIVISMO: MODELANDO EL CONOCIMIENTO CONECTIVO ECO-CONNECTIVISM: MODELING CONNECTIVE KNOWLEDGE (Vol. 23).

Csapó, B., & Molnár, G. (2019). Online diagnostic assessment in support of personalized teaching and learning: The eDia system. Frontiers in Psychology, 10(1), 1–14. https://doi.org/10.3389/fpsyg.2019.01522

Delgado, D. G. L., Delgado, F. E. A., & Quiroz, P. M. Z. (2019). Permanent application of diagnostic assessment on learning teaching process. International Journal of Linguistics, Literature and Culture, 5(4), 34–45. https://doi.org/10.21744/ijllc.v5n4.699

Dziuban, C. D., Moskal, P. D., Cassisi, J., & Fawcett, A. (2016). Adaptive Learning in Psychology : Wayfinding in the Digital Age. Online Learning, 20(3), 74–96.

Dziuban, C., Moskal, P., Johnson, C., & Evans, D. (2017). Adaptive Learning : A Tale of Two Contexts. Current Issues in Emerging ELearning, 4(1), 25–62.

Fives, Helenrose & DiDonato-Barnes, N. (2013). Classroom Test Construction: The Power of a Table of Specifications. Practical Assessment, Research & Evaluation, 18(3). http://pareonline.net/getvn.asp?v=18&n=3

Frey, B. B., Schmitt, V. L., & Allen, J. P. (2012). Defining authentic classroom assessment. Practical Assessment, Research and Evaluation, 17(2), 1–18.

Gallardo Córdova, K. E. (2013). Evaluación del aprendizaje: retos y mejores prácticas. Monterrey, Nuevo León. Editorial Digital del Tecnológico de Monterrey. Disponible en: http://www.amazon.com/Evaluaci%C3%B3n-del-aprendizaje-mejores-pr%C3%A1cticas-ebook/dp/B00Q9TBTTM

Hancock, D. R. (2007). Effects of performance assessment on the achievement and motivation of graduate students. Active Learning in Higher Education, 8(3), 219–231. https://doi.org/10.1177/1469787407081888

Isaac Agudo, Rubén Ríos, A. N. (2019). SERA: Sistema para la Evaluación y Retroalimentación Automática de Prácticas.

https://riuma.uma.es/xmlui/handle/10630/19588

Javidanmehr, Z., & Sarab, M. R. A. (2017). Cognitive diagnostic assessment: Issues and considerations. International Journal of Language Testing, 7(2), 73–98.

Kemet, S., & Paul, D. W. (2021). Medical education in the time of COVID-19. Academic Medicine, 1085. https://doi.org/10.1097/ACM.0000000000004003

Lemke, C. (2014). Intelligent Adaptive Learning: An Essential Element of 21st Century Teaching and Learning.

Levitt, S. D., & Dubner, S. J. (2014). Think like a freak. New York, NY: HarperCollins.

Liu, Z., Dong, L., & Wu, C. (2020). Research on personalized recommendations for students’ learning paths based on big data. International Journal of Emerging Technologies in Learning (iJET), 15(8), 40-56.

Marzano, R., & Kendall, J. (2008). Designing and assessing educational objectives: Applying the new taxonomy.

Miguel Román, J. A. (2020). La educación superior en tiempos de pandemia: una visión desde dentro del proceso formativo [Higher education in times of pandemic: a view from within the training process]. Revista Latinoamericana de Estudios Educativos, 50(ESPECIAL), 13–40. https://n9.cl/ov5w4

Morales, J. (2020). Oportunidad o Crisis Educativa: Reflexiones desde la Psicología para Enfrentar los Procesos de Enseñanza- Aprendizaje en Tiempos de Covid-19. Revista Internacional de Educación Para La Justicia Social, 9(3e), 1–9. https://revistas.uam.es/riejs/article/download/12228/12091/31118%0Awww.rinace.net/riejs/revistas.uam.es/riejs

Murray, M. C., & Pérez, J. (2015). Informing and Performing : A Study ComparingAdaptive Learning to Traditional Learning Informing and Performing: A Study Comparing Adaptive Learning to Traditional Learning. Informing Science: The International Journal of on Emerging Transdiscipline, 18, 111–125. https://digitalcommons.kennesaw.edu/facpubs/3436/

Palacios Núñez, M. L., Zuta, P. M., & Acosta, A. D. (2020). ¿Cómo formar la ciudadanía global desde entornos virtuales? El docente frente al trabajo colaborativo en tiempos de pandemia. Revista Científica Ciencia y Tecnología, 26(Vol. 20 Núm. 26 (2020)). https://doi.org/10.47189/rcct.v20i26.428

Pane, J., Steiner, E., Baird, M., & Hamilton, L. (2015). Continued Progress: Promising Evidence on Personalized Learning. RAND Corporation. https://doi.org/10.7249/RR1365

Patrick, S., Kennedy, K., & Powell, A. (2013). Mean what you say: defining and integrating personalized, blended and competency education. (Internatio). https://eric.ed.gov/?id=ED561301

Pérez-Archundia, E. (2020). Desigualdad y rezago. El sistema educativo mexicano al desnudo frente a la pandemia del COVID-19 Inequality and lack. Entramados, 7(7), 36–41. https://dialnet.unirioja.es/servlet/articulo?codigo=7507366

Picciano, A. G. (2019). Artificial intelligence and the Academy’s loss of purpose. Online Learning Journal, 23(3), 270–284. https://doi.org/10.24059/olj.v23i3.2023

SCOPUS (2021). Revisión de publicaciones arbitradas en el tema de Aprendizaje Adaptativo desde 2017. Recuperado de la base de datos de Scopus

SMAILI, E. M., Khoudda, C., Sraidi, S., Azzouzi, S., & Charaf, M. E. H. (2022). An Innovative Approach to Prevent Learners’ Dropout from MOOCs using Optimal Personalized Learning Paths: An Online Learning Case Study. Statistics, Optimization & Information Computing, 10(1), 45-58.

Tan Geok Shim, G., Shakawi, A. M. H. A., & Azizan, F. L. (2017). Relationship between Students’ Diagnostic Assessment and Achievement in a Pre-University Mathematics Course. Journal of Education and Learning, 6(4), 364–371. https://doi.org/10.5539/jel.v6n4p364

UADY. (2012). Modelo educativo para la formación integral. Modelo Educativo Para La Formación Integral. https://www.dgda.uady.mx/media/file/mefi.pdf

Wanichsan, D., Panjaburee, P., & Chookaew, S. (2021). Enhancing knowledge integration from multiple experts to guiding personalized learning paths for testing and diagnostic systems. Computers and Education: Artificial Intelligence, 2,100013.

Xie, H., Chu, H.-C., Hwang, G.-J., & Wang, C.-C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. Computers & Education, 140, 103599. https://doi.org/10.1016/j.compedu.2019.103599

Published
31-01-2023
How to Cite
Azcorra Novelo, V. G., & Gallardo Córdova, K. E. . (2023). Customisation of a diagnostic and feedback process for the development of intermediate algebra competences. Distance Education Journal, 23(73). https://doi.org/10.6018/red.525741

Most read articles by the same author(s)