Artificial Intelligence as an Assistant to Develop a Competency-based Curriculum in Continuing Education
Abstract
In this article, an exploratory study is presented, evaluating the curricular alignment of a competency-based continuing education program generated through an artificial intelligence tool. A rubric for assessing the curricular coherence of the program was developed, and the content validity of the instrument was established through the judgment of 13 experts in the curricular field. Specific instructions were generated to be used in the artificial intelligence tool for the development of the competency-based program. These instructions resulted in the draft of an online education program with a duration of 120 hours. Subsequently, the collaboration of 13 experts in the field was sought to use the previously created rubric to assess the curricular coherence of the program. According to the results, the use of artificial intelligence does not replace the curriculum design process for a program; however, it can be a valuable tool to make the design process much more efficient.
Downloads
References
Al Braiki, B., Harous, S., Zaki, N., y Alnajjar, F. (2020). Artificial intelligence in education and assessment methods. Bulletin of Electrical Engineering and Informatics, 9(5), 1998-2007. https://doi.org/10.11591/eei.v9i5.1984
Ainsworth L. (2010). Rigorous curriculum design: how to create curricular units of study that align standards instruction and assessment. Lead Learn Press.
Alfauzan, A. A., y Tarchouna, N. (2017). The role of an aligned curriculum design in the achievement of learning outcomes. Journal of Education and E-Learning Research, 4(3), 81-91. https://doi.org/10.20448/journal.509.2017.43.81.91
Aspin, D. N., y Chapman, J. D. (2000). Lifelong learning: concepts and conceptions. International Journal of lifelong education, 19(1), 2-19. https://doi.org/10.1080/026013700293421
Bates, T., Cobo, C., Mariño, O., y Wheeler, S. (2020). Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education, 17(42), 1-12. https://doi.org/10.1186/s41239-020-00218-x
Baumert, B., y May, D. (2013). Constructive alignment as teaching concept. Planning teaching in the field of engineering and social studies. Journal for Higher Education, 1(2), 23–27.
Bearman, M., Ryan, J., y Ajjawi, R. (2023). Discourses of artificial intelligence in higher education: A critical literature review. Higher Education, 86(2), 369-385. https://doi.org/10.1007/s10734-022-00937-2
Biggs, J. (1996). Enhancing Teaching through Constructive Alignment. Higher Education, 32, 347-364. https://doi.org/10.1007/BF00138871
Biggs, J. (1999). What the student does: Teaching for enhanced learning. Higher Education Research & Development, 18(1), 57–75. https://doi.org/10.1080/0729436990180105
Biggs, J. (2014). Constructive alignment in university teaching. Review of Higher Education, 1(36), 5–22.
Biggs, J., y Tang, C. (2007). Teaching for Quality Learning At University: What the Student Does (3rd ed.). McGraw-Hill.
Carlino, F. (2021). De la alienación al alineamiento constructivo. Más allá de la trampa mecanicista. Cuaderno de Pedagogía Universitaria, 18(35), 58-70. https://doi.org/10.29197/cpu.v18i35.413
Chappell, C., Gonczi, A., y Hager, P. (2020). Competency-based education. In G. Foley (Ed.), Understanding adult education and training (pp. 191-205). Routledge. https://doi.org/10.4324/9781003118299
Chen, L., Chen, P., and Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510
Cisternas-San Martín, Nataly V., Guzmán, Esteban N., y Pérez, Ruth. (2024). Evaluación curricular de programas de diplomado: propuesta de un modelo de diseño curricular por competencias basado en diseño inverso. Formación universitaria, 17(1), 69-80. https://dx.doi.org/10.4067/S0718-50062024000100069
Crompton, H., y Burke, D. (2023). Artificial intelligence in higher education: the state of the field. International Journal of Educational Technology in Higher Education, 20(1), 1-22. https://doi.org/10.1186/s41239-023-00392-8
Diaz, A. (2003). Currículum. Tensiones conceptuales y prácticas. Revista Electrónica de Investigación Educativa, 5(2), 1-13.
Eynon, R., y Malmberg, L. E. (2021). Lifelong learning and the Internet: Who benefits most from learning online?. British Journal of Educational Technology, 52(2), 569-583. https://doi.org/10.1111/bjet.13041
Fernández Díaz, M. J., Carballo Santaolalla, R., y Galán González, A. (2010). Faculty attitudes and training needs to respond the new European Higher Education challenges. Higher Education, 60(1), 101-118. https://doi.org/10.1007/s10734-009-9282-1
Firat, M. (2023). How chat GPT can transform autodidactic experiences and open education. Department of Distance Education, Open Education Faculty, Anadolu University. http://doi.org/10.31219/osf.io/9ge8m
González-Calatayud, V., Prendes-Espinosa, P., y Roig-Vila, R. (2021). Artificial intelligence for student assessment: A systematic review. Applied Sciences, 11(12), 5467. https://doi.org/10.3390/app11125467
Grant, J. (2018). Principles of curriculum design. In Understanding medical education: Evidence, theory, and practice. In T., Swanwick, , K. A. T., Forrest, y B. C. , O'Brien, (Eds.). Understanding Medical Education: Evidence, Theory, and Practice (pp. 71-88). Wiley-Blackwell.
Hsieh, H. F., y Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277–1288. https://doi.org/10.1177/1049732305276687
Hrivnak, G. A. (2019). The increasing importance of curriculum design and its implications for management educators. Journal of Management Education, 43(3), 271-280. https://doi.org/10.1177/1052562918822068
Huizinga, T., Handelzalts, A., Nieveen, N., y Voogt, J. M. (2014). Teacher involvement in curriculum design: Need for support to enhance teachers’ design expertise. Journal of Curriculum Studies, 46(1), 33-57. https://doi.org/10.1080/00220272.2013.834077
Jiménez, L. (2008). Enfoque curricular centrado en la persona. Revista Educación, 32(1), 63-76. Disponible en: https://www.redalyc.org/articulo.oa?id=44032106
Kandlbinder, P. (2014). Constructive alignment in university teaching. HERDSA News, 36(3), 5-6.
Kulik, A. A., Lazareva, P. V., Ippolitova, N. V., Egorova, A. E., y Nedorezova, O. Y. (2020). Competency-based approach and competencies in higher education: a theoretical review. Propósitos y representaciones, 8(2), e645. https://doi.org/10.20511/pyr2020.v8nSPE2.645
Laal, M., Laal, A., y Aliramaei, A. (2014). Continuing education; lifelong learning. Procedia-social and behavioral sciences, 116, 4052-4056. https://doi.org/10.1016/j.sbspro.2014.01.889
Laal, M., y Salamati, P. (2012). Lifelong learning; why do we need it?. Procedia-Social and Behavioral Sciences, 31, 399-403. https://doi.org/10.1016/j.sbspro.2011.12.073
Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563–575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
Lund, B. D., y Wang, T. (2023). Chatting about ChatGPT: how may AI and GPT impact academia and libraries? Library Hi Tech News, 40(3), 26-29. http://doi.org/10.1108/LHTN-01-2023-0009
McKimm, J. (2007). Curriculum design and development. Medical Education, 1-32.
Osorio, M. (2014). El curriculo: Perspectivas para acercarnos a su comprensión. Revista del Instituto de Estudios en Educación y del Instituto de Idiomas Universidad del Norte, (26), 140-151. http://dx.doi.org/10.14482/zp.26.10205
Ouyang, F., Zheng, L., y Jiao, P. (2022). Artificial intelligence in online higher education: A systematic review of empirical research from 2011 to 2020. Education and Information Technologies, 27(6), 7893-7925. https://doi.org/10.1007/s10639-022-10925-9
Polit, D., Tatano, C. and Owen, S. (2007). Is the CVI an Acceptable Indicator of Content Validity? Appraisal and Recommendations. Research in Nursing & Health, 30(4), 459–467. https://doi.org/10.1002/nur.20199
Robinson, T. E., y Hope, W. C. (2013). Teaching in Higher Education: Is There a Need for Training in Pedagogy in Graduate Degree Programs? Research in Higher Education Journal, 21, 1-11.
Rodríguez, A. y Pérez, A. (2024). Universidad actual y el modelo de alineamiento constructivo. InterCambios. Dilemas y Transiciones de la Educación Superior, 11(1), 23-33. http://doi.org/10.29156/inter.11.1.3
Sarmiento, P., y Tovar, M. C. (2007). El análisis documental en el diseño curricular: Un desafío para los docentes. Colombia Médica, 38(4), 54-63. https://hdl.handle.net/10893/4241
Silvestre, J., y Salgado, E. (2005). El diseño curricular y la planeación estratégica. Innovación Educativa, 5(26), 25-35,
Tsai, M. L., Ong, C. W., y Chen, C. L. (2023). Exploring the use of large language models (LLMs) in chemical engineering education: Building core course problem models with Chat-GPT. Education for Chemical Engineers, 44, 71-95. https://doi.org/10.1016/j.ece.2023.05.001
Ullah, Z., Lajis, A., Jamjoom, M., Altalhi, A., y Saleem, F. (2020). Bloom’s taxonomy: A beneficial tool for learning and assessing students’ competency levels in computer programming using empirical analysis. Computer Applications in Engineering Education, 28(6), 1-13. https://doi.org/10.1002/cae.22339
Van Nuland, S. E., Hall, E., y Langley, N. R. (2020). STEM crisis teaching: curriculum design with e‐learning tools. Faseb Bioadvances, 2(11), 631-637. http://doi.org/10.1096/fba.2020-00049
Vera, J., García, A., Peña, J. y Gallardo, B. (1999). Criterios de selección de los contenidos del Currículum. Teoría educativa, 11, 13-52. https://doi.org/10.14201/2834
Villa Sánchez, A. (2020). Aprendizaje Basado en Competencias: desarrollo e implantación en el ámbito universitario. REDU: Revista de docencia universitaria, 18(1), 19-46. https://doi.org/10.4995/redu.2020.13015
Voorhees, R. A. (2001). Competency‐Based learning models: A necessary future. New directions for institutional research, 2001(110), 5-13. http://doi.org/10.1002/ir.7
Wang, X., Su, Y., Cheung, S., Wong, E., y Kwong, T. (2013). An exploration of Biggs‘ constructive alignment in course design and its impact on students‘ learning approaches. Assessment & Evaluation in Higher Education, 38(4), 477–491. https://doi.org/10.1080/02602938.2012.658018
Wiggins, G., y McTighe, J. (2005). Understanding by design (2nd ed.). Association for Supervision and Curriculum Development ASCD.
Zawacki-Richter, O., Marín, V. I., Bond, M., y Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
Copyright (c) 2024 Journal of Educational Research
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articles and scientific documents published in RIE abide the following conditions:
1. The Servicio de Publicaciones de la Universidad de Murcia (the publisher) has the property rights (copyright) of all the documents published and allows the reuse under the user’s license indicated in point 2.
2. All documents are published in the digital edition of RIE under a Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (legal document) license. These documents can be copied, used, distributed, communicated and explained publicly if: i) the author(s) and its original source of publishing (magazine, publisher and URL of the document) are cited; ii) it is not used for commercial purpose; iii) the existence and the specifications about this license are mentioned.
3. Auto-archive’s conditions. The authors are allowed and encouraged to digitally distribute the pre-print versions (a version before evaluation) and/or post-print (a version that it is already evaluated and accepted to its publication). This promotes circulation and distribution earlier and can increase the citations and significance within the academic community.