Statistical matching in practice – An application to the evaluation of the education system from PISA and TALIS

Authors

  • Ixiar Leunda Iztueta
  • Ines Garmendia Navarro
  • Juan Etxeberria Murgiondo Universidad del País Vasco - Euskal Herriko Unibertsitatea
DOI: https://doi.org/10.6018/rie.35.2.262171
Keywords: statistical matching, education, evaluation, Pisa, Talis

Abstract

Statistical matching methods are aimed at the integration of information collected through multiple sources, usually, surveys drawn from some target population. As opposed to record linkage methods -where we search for identical units-, in statistical matching we search for similar units in order to find statistical relations across databases. Methods: Statistical matching is feasible provided that the independent surveys share a common block of variables. A particular solution is based on imputation methods for missing data: first, the distinct files are concatenated (i.e. rows and columns are joined together to form a unique file); next, empty cells corresponding to non-observed values are interpreted as missing data, and they are imputed according to observed data. Results: The fundamental concepts of statistical matching are shown, and the process is illustrated with the PISA (2012) and TALIS (2013) educational studies with Spain’s data. Imputations are carried out using mice package from the free R software. A first validation of the results is performed. Conclusions: Statistical matching offers high potential benefits for the social sciences since it enables to relate information from independent information sources. These techniques can now be applied with relative ease thanks to the development of tools such as R computing environment.


Downloads

Download data is not yet available.

References

Breakspear, S. (2012). The policy impact of PISA: An Exploration of the Normative Effects of International Benchmarking in School System Performance. OECD Journals, 71, 1–32. http://dx.doi.org/10.1787/19939019

Choi, A., & Jerrim, J. (2016). The Use (and Misuse) of PISA in Guiding Policy Reform: The Case of Spain. Comparative education. 56(2), 230–245. http://dx.doi.org/10.1080/03050068.2016.1142739

D’Orazio, M., Di Zio, M., & Scanu, M. (2006). Statistical Matching: Theory and Practice. NJ: Wiley.

D’Orazio, M. (2012). StatMach: Statistical Matching. R package version 1.2.0. http://CRAN.R-project.org/package=StatMatch

D’Orazio, M. (2013). Statistical Matching: Metodological issues and practice with R-StatMatch (or. 69). XXVI. Seminario Internacional de Estadística. Eustat. http://www.eustat.es/prodserv/seminario_i.html#axzz2sF9JV1rV

Eurostat (2008). Recommendations on the use of methodologies for the integration of surveys and administrative data. http://www.cros-portal.eu/sites/default/files//Report_of_WP2.doc

Fernández-Díaz, M. J.; Rodríguez-Mantilla J. M., & Martínez-Zarzuelo, A. (2016). PISA y TALIS ¿congruencia o discrepancia? RELIEVE, 22(1), art. M6. http://dx.doi.org/10.7203/relieve.22.1.8247

González-Such, J., Sancho-Álvarez, C., & Sánchez-Delgado, P. (2016). Cuestionarios de contexto pisa: Un estudio sobre los indicadores de evaluación. RELIEVE, 22(1), art. M7. http://dx.doi.org/10.7203/relieve.22.1.8274

Gustafsson, J. E. (2003). What Do We Know About Effects of School Resources on Educational Results? Swedish Economic Policy Review, 10, 77-110.

Jolani S, Frank L.E., & van Buuren S (2014). Dual imputation model for incomplete longitudinal data. British Journal of Mathematical and Statistical Psychology, 67(2), 197-212. http://dx.doi.org/10.1111/bmsp.12021

Jong R., van Buuren S., & Spiess M. (2014). Multiple imputation of predictor variables using generalized additive models. Communications in Statistics - Simulation and Computation, 45(3), 1-18. http://dx.doi.org/10.1080/03610918.2014.911894

Kaplan, D., & Turner, A. (2012). Statistical Matching of PISA 2009 and TALIS 2008 Data in Iceland (OECD Education Working Papers). Paris: Organisation for Econo- mic Co-operation and Development. http://www.oecd-ilibrary.org/;jsessionid=2ah7v0n0eg9ce.x-oecd-live-02content/workingpaper/5k97g3zzvg30-en

Kaplan, D., & Turner, A. (2013). Data fusion with international large scale assessments: a case study using the OECD PISA and TALIS Surveys. Springer-Verlag. http://link.springer.com/article/10.1186%2F2196-0739-1-6/fulltext.html

Leulescu, A., & Agafitei, M. (2013). Statistical matching: A model based approach for data integration. Luxembourg: European Commission, Eurostat. Publications Office.

OECD (2012). Pisa 2012. http://www.oecd.org/pisa/keyfindings/pisa-2012-results.htm

OECD (2013). Talis 2013. http://www.oecd.org/edu/school/talis.htm

Rässler, S. (2002). Statistical matching. A frequentist theory, practical applications, and alternative Bayesian approaches. New York: Springer.

Rubin. D.B. (1987). An overview on multiple imputation. http://www.amstat.org/sections/srms/Proceedings/papers/1988_016.pdf

Taut, S., & Palacios, D. (2016). Interpretaciones no intencionadas e intencionadas y usos de los resultados de PISA: Una perspectiva de validez consecuencial. RELIEVE, 22(1), art. M8. http://dx.doi.org/10.7203/relieve22.1.8294

Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). MICE: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1–67.

Van Buuren, S. (2014). Mice. Imputation by random forests. http://www.inside-r.org/packages/cran/mice/docs/mice.impute.rf

Wheater, R. (2013). Achievement of 15 year olds in England: PISA 2012 national report. OECD Programme for International Student Assessment. https://www.nfer.ac.uk/publications/PQUK02/PQUK02.pdf

Published
07-07-2017
How to Cite
Leunda Iztueta, I., Garmendia Navarro, I., & Etxeberria Murgiondo, J. (2017). Statistical matching in practice – An application to the evaluation of the education system from PISA and TALIS. Journal of Educational Research, 35(2), 371–388. https://doi.org/10.6018/rie.35.2.262171
Issue
Section
Articles