PISA 2022. Predictors of computational thinking performance in secondary education in Spain
Abstract
This study aims to determine the effect of a set of predictors on performance in computational thinking. The sample consists of 30800 Spanish students in secondary education who participated in PISA 2022: 15561 boys (50.5%) and 15239 girls (49.5%) from 966 schools. A multilevel multiple regression was used to analyse the significant effects of the independent variables on performance at two levels (Students and Schools). The results show that boys score more points in computational thinking performance than girls, as there is a gender gap in digital competence in favour of boys. The socio-economic background of the students and the use of ICT at home have a strong impact on performance. At school level, the results show that private schools with greater availability of ICT resources score more points than public schools with fewer resources. These findings suggest the need to promote computational thinking programmes in schools to foster students' vocation in STEM disciplines, to use applications to develop computational thinking and to reinforce students' digital competence.
Downloads
References
Adell, J., Llopis, M. A., Esteve, F. M., & Valdeolivas, M. G. (2019). El debate sobre el pensamiento computacional en educación. RIED. Revista Iberoamericana de Educación a Distancia, 22(1),171-186. https://doi.org/10.5944/ried.22.1.22303
Aguayo-Téllez, E., & Martínez-Rodríguez, F.E. (2020). Early school entrance and middle-run academic performance in Mexico: evidence for 15-year-old students from the PISA test. Large-scale Assessments in Education, 8(1), 1-15. https://doi.org/10.1186/s40536-020-00089-8
Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics environments for supporting complex systems and computational thinking. Journal of Science Education and Technology, 24(5), 628-647. https://doi.org/10.1007/s10956-015-9552-x
Caballero-González, Y.A., & García-Valcárcel, A. (2020). Fortaleciendo el pensamiento computacional y habilidades sociales mediante actividades de aprendizaje con robótica educativa en niveles escolares iniciales. Píxel-Bit. Revista de Medios y Educación, (58), 117-142. https://doi.org/10.12795/pixelbit.75059
Cabero-Almenara, J., & Palacios-Rodríguez, A. (2020). Marco Europeo de Competencia Digital Docente «DigCompEdu» y cuestionario «DigCompEdu Check-In». EDMETIC, Revista de Educación Mediática y TIC, 9(1), 213-234. https://doi.org/10.21071/edmetic.v9i1.12462
Chan, S.W., Looi, C.K., & Sumintono, B. (2021). Assessing computational thinking abilities among Singapore secondary students: a Rasch model measurement analysis. Journal of Computers in Education, 8(2), 213-236. https://doi.org/10.1007/s40692-020-00177-2
Chang, I. (2023). Early numeracy and literacy skills and their influences on fourth-grade mathematics achievement: a moderated mediation model. Large-scale Assessments in Education, 11(18), 1-15. https://doi.org/10.1186/s40536-023-00168-6
Coleman, J.S., Campbell, E.Q., Hobson, C.J., McPartland, J., Mood, A.M., Weinfeld, F.D., & York. R.L. (1966). Equality of Educational Opportunity. U.S. Department of Health, Education y Welfare Office of Education. National Center for Educational Statistics.
Escardíbul, J.O., & Mediavilla, M. (2016). El efecto de las TIC en la adquisición de competencias. Un análisis por tipo de centro educativo. Revista Española de Pedagogía, 74(264), 317-335.
Esteve-Mon, F. M., Llopis, M. Ángeles, & Adell-Segura, J. (2020). Digital competence and computational thinking of student teachers. International Journal of Emerging Technologies in Learning (iJET), 15(02), 29–41. https://doi.org/10.3991/ijet.v15i02.11588
Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T. (2019). Computational thinking framework. En J. Fraillon, J. Ainley, W. Schulz, D. Duckworth, & T. Friedman (Coords.)., IEA International Computer and Information Literacy Study 2018 Assessment Framework (pp. 25–31). Springer International Publishing. https://doi.org/10.1007/978-3-030-19389-8_3
García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407–411. https://doi.org/10.1016/j.chb.2017.12.005
Gaviria, J.L., & Castro, M. (2004). Modelos jerárquicos lineales. La Muralla.
Goldstein, H. (2003). Multilevel Statistical Models. Hodder Arnold.
González-Betancor, S.M., López-Puig, A., & Cardenal, M.E. (2021). Digital inequality at home. The school as compensatory agent. Computers & Education, 168, 1-12. https://doi.org/10.1016/j.compedu.2021.104195
Gubbels, J., Swart, N.M., & Groen, M.A. (2020). Everything in moderation: ICT and reading performance of Dutch 15-year-olds. Large-scale Assessments in Education, 8(1), 1-14. https://doi.org/10.1186/s40536-020-0079-0
Guggemos, J. (2021). On the predictors of computational thinking and its growth at the high-school level. Computers & Education, 161, 1-15. https://doi.org/10.1016/j.compedu.2020.104060
Hann, T. (2020). Investigating the impact of teacher practices and noncognitive factors on mathematics achievement. Research in Education, 108(1), 22-45. https://doi.org/10.1177/0034523719842601
Herrero-Álvarez, R., Miranda, G., León, C., & Segredo, E. (2023). Engaging primary and secondary school students in computer science through computational thinking training. IEEE Transactions on Emerging Topics in Computing, 11(1), 56-69. https://doi.org/10.1109/TETC.2022.3163650
Hsu, Y.C., Roote, N., & Ching, Y.H. (2019). Computational Thinking Educational Policy Initiatives (CTEPI) across the globe. TechTrends, 63(3), 260-270. https://doi.org/10.1007/s11528-019-00384-4
International Society for Technology in Education (ISTE) (9 de diciembre de 2023). Computational thinking in K-12 Education. Teacher resources. https://bit.ly/41emUYE
Jun, S., Han, S., & Kim, A. (2017). Effect of design-based learning on improving computational thinking. Behaviour & Information Technology, 36(1), 43-53. https://doi.org/10.1080/0144929X.2016.1188415
Juskeviciene, A., & Dagiene, V. (2018). Computational thinking relationship with digital competence. Informatics in Education, 17(2), 265-284. https://doi.org/10.15388/infedu.2018.14
Kale, U., Akcaoglu, M., Cullen, T., Goh, D. (2018). Contextual factors influencing access to teaching computational thinking. Computers in the Schools, 35(2), 69-87. https://doi.org/10.1080/07380569.2018.1462630
Kang, H., & Cogan, L. (2022). The differential role of socioeconomic status in the relationship between curriculum-based Mathematics and Mathematics literacy: the link between TIMSS and PISA. International Journal of Science and Mathematics Education, 20(1), 133-148. https://doi.org/10.1007/s10763-020-10133-2
Kerlinger, F., & Lee, H. (2002). Investigación del comportamiento. Métodos de investigación en Ciencias Sociales. McGraw-Hill.
Lee, J., & Borgonovi, F. (2022). Relationships between family socioeconomic status and Mathematics achievement in OECD and non-OECD countries. Comparative Education Review, 66(2), 199-227. https://doi.org/10.1086/718930
Lee, A.W., Liang, j.C., Hsu, C.Y., Chien, F.P., & Tsai, M.J. (2023). Exploring potential factors to students' computational thinking: Interactions between gender and ICT-resource differences in taiwanese junior high schools. Educational Technology & Society, 26(3), 176-189. https://doi.org/10.30191/ETS.202307_26(3).0013
Liao, C.H., Chiang, C.T., Chen, I.C., & Parker, K.R. (2022). Exploring the relationship between computational thinking and learning satisfaction for non-STEM college students. International Journal of Educational Technology in Higher Education, 19(43), 1-21. https://doi.org/10.1186/s41239-022-00347-5
Lopes, J., Oliveira, C., & Costa, P. (2022). Determinantes escolares y de los estudiantes en el rendimiento lector: un análisis multinivel con estudiantes portugueses. Revista de Psicodidáctica, 27(1), 29-37. https://doi.org/10.1016/j.psicod.2021.05.001
López, V., Salgado, M., & Berkowitz, R. (2023). The contributions of school and classroom climate to mathematics test scores: a three-level análisis. School Effectiveness and School Improvement, 34(1), 43-64. https://doi.org/10.1080/09243453.2022.2096645
Loureiro, A.C., Meirinhos, M., Osório, A.J., & Valente, L. (2022). Computational thinking in teacher digital competence frameworks. Revista Prisma Social, (38), 77-93. https://revistaprismasocial.es/article/view/4783
Lucas, M., Bem-Haja, P., Santos, S., Figueiredo, H., Ferreira, M., & Amorim, M. (2022). Digital proficiency: Sorting real gaps from myths among higher education students. British Journal of Educational Technology, 53(6), 1885-1914. https://doi.org/10.1111/bjet.13220
Martínez, M.C., & Echeveste, M.E. (2015). Representaciones de estudiantes de primaria y secundaria sobre las Ciencias de la Computación y su oficio. RED-Revista de Educación a Distancia, 46(13), 1-38. https://doi.org/10.6018/red/46/13
Ministerio de Educación, Formación Profesional y Deportes. (8 de diciembre de 2023a). Marco para las pruebas de Matemáticas. PISA 2022. https://bit.ly/475G9VT
Ministerio de Educación, Formación Profesional y Deportes. (9 de diciembre de 2023b). PISA 2022. Programa para la Evaluación Internacional de los Estudiantes. Informe Español. https://bit.ly/46Qt9mO
Ministerio de Educación y Formación Profesional. (9 de diciembre de 2023). Las cifras de la educación en España: Estadísticas e indicadores. Edición 2022. https://bit.ly/4ayAjiw
Moreira-Fontán, E., García-Señorán, M., Conde-Rodríguez, A., & González, A. (2019). Teachers' ICT-related self-efficacy, job resources, and positive emotions: Their structural relations with autonomous motivation and work engagement. Computers & Education, 134, 63-77. https://doi.org/10.1016/j.compedu.2019.02.007
Niño-Cortés, L.M., Grimalt-Álvaro, C., Lores-Gómez, B., & Usart, M. (2023). Brecha digital de género en secundaria: diferencias en competencia autopercibida y actitud hacia la tecnología. Educación XX1, 26(2), 299-322. https://doi.org/10.5944/educxx1.34587
OECD. (16 de diciembre de 2023). PISA 2022 Assessment and Analytical Framework. https://doi.org/10.1787/dfe0bf9c-en
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
Pardo, A., Ruiz, M.A., & San Martín, R. (2007). Cómo ajustar e interpretar modelos multinivel con SPSS. Psicothema, 19(2), 308-321.
Picado-Arce, K., Matarrita-Muñoz, S., Núñez-Sosa, O., & Zúñiga-Céspedes, M. (2021). Facilitadores del desarrollo del pensamiento computacional en estudiantes costarricenses. Comunicar, 68, 85-96. https://doi.org/10.3916/C68-2021-07
Pivovarova, M., & Powers, J.M. (2019). Generational status, immigrant concentration and academic achievement: comparing first and second-generation immigrants with third-plus generation students. Large-scale Assessments in Education, 7(7), 1-18. https://doi.org/10.1186/s40536-019-0075-4
Polat, E., Hopcan, S., Kucuk, S., & Sisman, B. (2021). A comprehensive assessment of secondary school students’ computational thinking skills. British Journal of Educational Technology, 52(5), 1965-1980. https://doi.org/10.1111/bjet.13092
Quiroz, S.S., Dari, N.L., & Cervini, R.A. (2018). Nivel socioeconómico y brecha entre educación secundaria pública y privada en Argentina. Los datos de PISA 2015. REICE. Revista Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 16(4), 79-97. https://doi.org/10.15366/reice2018.16.4.005
Restrepo-Palacio, S. & Segovia, Y. M. (2020). Diseño y validación de un instrumento de evaluación de la competencia digital en Educación Superior. Ensaio: Avaliação e Políticas Públicas em Educação, 28(109), 932–961. https://doi.org/10.1590/s0104-40362020002801877
Rodríguez-Mantilla, J.M., Fernández-Díaz, M.J., & Jover, G. (2018). PISA 2015: Predictores del rendimiento en Ciencias en España. Revista de Educación, (380), 75-102. https://doi.org/10.4438/1988-592X-RE-2017-380-373
Rodríguez-Martínez, J.A., González-Calero, J.A., & Sáez-López, J.M. (2020). Computational thinking and mathematics using Scratch: an experiment with sixth-grade students. Interactive Learning Environments, 28(3), 316-327. https://doi.org/10.1080/10494820.2019.1612448
Román-González, M., Pérez-González, J.C., Moreno-León, J., & Robles, G. (2018). Extending the nomological network of computational thinking with non-cognitive factors. Computers in Human Behavior, 80, 441-459. https://doi.org/10.1016/j.chb.2017.09.030
Sayans-Jiménez, P., Vázquez-Cano, E., & Bernal-Bravo, C. (2018). Influencia de la riqueza familiar en el rendimiento lector del alumnado en PISA. Revista de Educación, (380), 129-155. https://doi.org/10.4438/1988-592X-RE-2017-380-375
Snijders, T. A., & Bosker, R.J. (2012). Multilevel analysis: An introductionto basic and advanced multilevel modeling. Sage Publications.
Sun, L., You, X., & Zhou, D. (2023). Evaluation and development of STEAM teachers’ computational thinking skills: Analysis of multiple influential factors. Education and Information Technologies, (28), 14493-14527. https://doi.org/10.1007/s10639-023-11777-7
Tourón, J., López-González, E., Lizasoain, L., & Navarro, E. (2023). Análisis de datos y medida en educación. (Vol. II). UNIR Editorial.
Tsai, M.J., Wang, C.Y., & Po-Fen, H. (2019). Developing the computer programming self-efficacy scale for computer literacy education. Journal of Educational Computing Research, 56(8), 1345-1360. https://doi.org/10.1177/0735633117746747
Uslu, N.A. (2023). How do computational thinking self-efficacy and performance differ according to secondary school students' profiles? The role of computational identity, academic resilience, and gender. Education and Information Technologies, 28(5), 6115-6139. https://doi.org/10.1007/s10639-022-11425-6
Villalustre, L. (2024). Análisis del nivel de pensamiento computacional de los futuros maestros: una propuesta diagnóstica para el diseño de acciones formativas. Píxel-Bit. Revista de Medios y Educación, (69), 169-194. https://doi.org/10.12795/pixelbit.101205 Walkington, C., Clinton, V., & Shivraj, P. (2018). How readability factors are differentially associated with performance for students of different backgrounds when solving mathematics word problems. American Educational Research Journal, 55(2), 362-414. https://doi.org/10.3102/0002831217737028
Wei, X., Lin, L., Meng, N., Tan, W., Kong, S.C., & Kinshuk, K. (2021). The effectiveness of partial pair programming on elementary school students’ Computational Thinking skills and self-efficacy. Computers & Education, 160 (104023), 1-18. https://doi.org/10.1016/j.compedu.2020.104023
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215.
Wu, M., & Adams, F. (2002). Manual de análisis de datos de PISA 2003: usuarios de SPSS. OCDE.
Copyright (c) 2024 Distance Education Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.