Translation errors between sequential programming languages in Cubetto activities.

Authors

DOI: https://doi.org/10.6018/red.552581
Keywords: Computational thinking, computational literacy, representation systems, programming errors, Cubetto robot

Abstract

Computational thinking, understood as the human ability to solve problems in different fields using computer science tools, is one of the skills that should be developed from an early age. Among the different educational approaches to tackle this task, educational robots stand out as a valuable tool in the classroom. Thus, in this article we aim to analyse what types of errors, difficulties and frequencies of such errors are made by teachers in training in Infant and Primary Education when faced with the resolution of translation tasks between the programming language based on the use of the Cubetto robot and verbal language. For this purpose, the methodology used was mixed, with a sample of 32 participants. The results show that a significant percentage of trainee teachers have difficulties associated with understanding the programming language of the Cubetto robot, despite not being aware of these difficulties; where part of these difficulties are due to the uniqueness of the robot's programming table, which can lead to errors of didactic transposition to the basic education classroom.

Downloads

Download data is not yet available.

References

Anzoátegui, L. G. C., Jarrín, M. D. C. S. & Pereira, M. I. A. R. (2017). Cubetto para pre-escolares: programación informática código a código. Atas do XIX Simpósio Internacional de Informática Educativa e VIII Encontro do CIED–III Encontro Internacional, 114-118.

Berciano, A., Salgado, M. y Jiménez-Gestal, C. (2022). Alfabetización computacional en educación infantil: Dificultades y beneficios en el aula de 3 años. Revista Electrónica Educare, 26(2), 1-21. https://doi.org/10.15359/ree.26-2.15

Bers, M. U. (2017). Coding as a playground: Programming and computational thinking in the early childhood classroom. Routledge. https://doi.org/10.4324/9781315398945

Bers, M. U. (2018). Coding and computational thinking in early childhood: The impact of ScratchJr in Europe. European Journal of STEM Education, 3(3):08. https://doi.org/10.20897/ejsteme/3868

Bers, M. U., Flannery, L., Kazakoff, E. R. & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157. https://doi.org/10.1016/j.compedu.2013.10.020

Bers, M. U., González-González, C. & Armas–Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130-145. https://doi.org/10.1016/j.compedu.2019.04.013

Bravo Sánchez, F. Á. & Forero Guzmán, A. (2012). La robótica como un recurso para facilitar el aprendizaje y desarrollo de competencias generales. Teoría de la Educación. Educación y Cultura en la Sociedad de la Información, 13(2), 120-136. https://doi.org/10.14201/eks.9002

Bryman, A. (2006). Integrating quantitative and qualitative research: how is it done? Qualitative research, 6(1), 97-113. https:/doi.org/10.1177/1468794106058877

Cameron, R. (2010). Mixed methods in VET research: Usage and quality. International Journal of Training Research, 8(1), 25-39. https://doi.org/10.5172/ijtr.8.1.25

Da Silva, M. & González, C. (2017). PequeBot: Propuesta de un Sistema Ludificado de Robótica Educativa para la Educación Infantil. Actas del V Congreso Internacional de Videojuegos y Educación (CIVE'17) ISBN 978-84-697-3849-8 Universidad de la Laguna. Recuperado de: https://riull.ull.es/xmlui/handle/915/6677

Delacruz, S. (2020). Starting from scratch (Jr.): Integrating code literacy in the primary grades. The Reading Teacher, 73(6), 805-812. https://doi.org/10.1002/trtr.1909

Díaz López, S. M. (2015). Los métodos mixtos de investigación: Presupuestos Generales y Aportes a la Evaluación Educativa. Revista Portuguesa De Pedagogía, 1(1) 7-23. https://doi.org/10.14195/1647-8614_48-1_1

DiSessa, A. A. (2001). Changing minds: Computers, learning, and literacy. MIT Press. https://doi.org/10.7551/mitpress/1786.001.0001

Duin, A. H. & Tham, J. C. K. (2019). Cultivating code literacy: Course redesign through advisory board engagement. Communication Design Quarterly Review, 6(3), 44-58. https://doi.org/10.1145/3309578.3309583

Duval, R. (1998). Registros de representación semiótica y funcionamiento cognitivo del pensamiento. In F. Hitt (Ed.), Investigaciones en Matemática Educativa II (pp. 173-201). México: Cinvestav.

Faber, H., Koning, J., Wierdsma, M., Steenbeek, H. & Barendsen, E. (2019, November). Observing abstraction in young children solving algorithmic tasks. In International Conference on Informatics in Schools: Situation, Evolution, and Perspectives (95-106). Springer. https://doi.org/10.1007/978-3-030-33759-9_8

Fischbein, E. (1977). Image and Concept in Learning Mathematics. Dordrecht, Holanda: Reidel Publishing Company. https://doi.org/10.1007/BF00241022

García-Peñalvo, F. J. & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407-411. https://doi.org/10.1016/j.chb.2017.12.005

García-Valcárcel, A. & Caballero-González, Y. (2019). Robótica para desarrollar el pensamiento computacional en Educación Infantil. Comunicar: Revista científica iberoamericana de comunicación y educación, 27(59), 63-72. https://doi.org/10.3916/C59-2019-06

González-González, C. S. (2019). Estado del arte en la enseñanza del pensamiento computacional y la programación en la etapa infantil. Education in the Knowledge Society (EKS). https://doi.org/10.14201/eks2019_20_a17

González Martínez, J., Estebanell Minguell, M. & Peracaula Bosch, M. (2018). ¿Robots o programación? El concepto de Pensamiento Computacional y los futuros maestros. Education in the Knowledge Society (EKS), 19(2), 29–45. https://doi.org/10.14201/eks20181922945

Greene, J. C., Caracelli, V. J. & Graham, W. F. (1989). Toward a conceptual framework for mixed-method evaluation designs. Educational evaluation and policy analysis, 11(3), 255-274. https://doi.org/10.3102/01623737011003255

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12 education. Communications of the ACM, 59(8), 26-27. https://doi.org/10.1145/2955114

Ladzowska, E. & Patterson, D (November 26, 2013). Students of All Majors Should Study Computer Science. Chronicle of Higher Education. https://bit.ly/3Oj55j4

Lesh, R., Post, T. & Behr, M. (1987). Representations and translation among representations in mathematics learning and problem solving. In C. Janvier (eds.) Problems of representations in the teaching and learning of mathematics (pp. 33-40). Hillsdale, NJ: Lawrence Erlbaum Associates.

Marinus, E., Powell, Z., Thornton, R., McArthur, G. & Crain, S. (2018, August). Unraelling the cognition of coding in 3-to-6-years old: The development of an assessment tool and the relation between coding ability and cognitive compiling of syntax in natural language. In Proceedings of the 2018 ACM Conference on International Computing Education Research (133-141). https://doi.org/10.1145/3230977.3230984

Martí, E. & Pozo, J. I. (2000). Más allá de las representaciones mentales: la adquisición de los sistemas externos de representación. Infancia y aprendizaje, 23(90), 11-30. https://doi.org/10.1174/021037000760087946

Martín, G., Toledo, G. y Cerverón, V. (2002). Fundamentos de Informática y Programación. Universidad de Valencia

Martínez Miguélez, M. (2006). Validez y confiabilidad en la metodología cualitativa. Paradigma, 27(2), 07-33.

Ministerio de Educación y Formación Profesional (2022a). Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil. Boletín Oficial del Estado, 2 de febrero de 2022, 28, 14561-14595.

Ministerio de Educación y Formación Profesional (2022b). Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria. Boletín Oficial del Estado, 2 de marzo de 2022, 52, 24386-24504.

Núñez Moscoso, J. (2017). Los métodos mixtos en la investigación en educación: hacia un uso reflexivo. Cadernos de pesquisa, 47(163), 632-649. https://doi.org/10.1590/198053143763

Palmer, S. (1978). Fundamental aspects of cognitive representation. In Rosch, E. and Lloyd, B (eds.) Cognition and Categorization, Lawrence Elbaum Associates. pp. 259-303.

Papert, S. (1980). Mindstorms: Children, computers and powerful ideas. Harvester Press.

Pérez-Echeverría, M. P., Martí, E. & Pozo, J. I. (2010). Los sistemas externos de representación como herramientas de la mente. Cultura y Educación, 22(2), 133-147. https://doi.org/10.1174/113564010791304519

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K. Millner, A., Rosenbaum, E., Silver, J. Silverman, B. & Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60-67. https://doi.org/10.1145/1592761.1592779

Resnick, M. & Rusk, N. (2020). Coding at a crossroads. Communications of the ACM, 63(11), 120-127.

Ruiz-Velasco, E. (2007). Educatrónica. Innovación en el aprendizaje de las ciencias y la tecnología. Ediciones Díaz de Santos S.A.

Seckel, M. J., Vásquez, C., Samuel, M. & Breda, A. (2021). Errors of programming and ownership of the robot concept made by trainee kindergarten teachers during an induction training. Education and Information Technologies, 27(3), 2955-2975. https://doi.org/10.1007/s10639-021-10708-8

Segatto, R. & Teixeira, A. C. (2021). Utilização do Robô Cubetto em Um Processo De Formação Docente Para Professores Da Educação Básica Na Área Da Robótica Educacional. Ensino de Ciências e Tecnologia em Revista–ENCITEC, 11(1), 219-236. https://doi.org/10.31512/encitec.v11i1.390

Vee, A. (2017). Coding literacy: How computer programming is changing writing. MIT Press. https://doi.org/10.7551/mitpress/10655.001.0001

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215

Wing, J. (2011). Research notebook: Computational thinking—what and why? The link magazine. Pittsburgh: Spring. Carnegie Mellon University. Recuperado de: https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

Yadav, A., Gretter, S., Good, J. & Mclean, T. (2017). Computational Thinking in Teacher Education. In P. J. Rich & C. B. Hodges (eds.), Emerging Research, Practice, and Policy on Computational Thinking, 205-220. Springer. https://doi.org/10.1007/978-3-319-52691-1

Yang, W., Ng, D. T. K. & Gao, H. (2022). Robot programming versus block play in early childhood education: Effects on computational thinking, sequencing ability, and self‐regulation. British Journal of Educational Technology, 53, 1817-1841. https://doi.org/10.1111/bjet.13215

Yu, J. & Roque, R. (2019). A review of computational toys and kits for Young children. International Journal of Child-Computer Interaction, 21, 17-36. https://doi.org/10.1016/j.ijcci.2019.04.001

Zapata, J. M., Jameson, E., Ros, M. Z. & Merrill, D. (2021). El Principio de Activación en el Pensamiento Computacional, las Matemáticas y el STEM: Presentación del número especial. Revista de Educación a Distancia (RED), 21(68). https://doi.org/10.6018/red.498531

Published
31-07-2023
How to Cite
Berciano Alcaraz, A., Cuida Gómez, A., & Novo Martín, M. L. (2023). Translation errors between sequential programming languages in Cubetto activities. Distance Education Journal, 23(76). https://doi.org/10.6018/red.552581
Issue
Section
Learning Engineering and Instructional Engineering