Systematic review of three-dimensional immersive digital environments in the teaching of programming
Abstract
Currently, three-dimensional immersive digital environments (TIDE) have been applied to the educational field, being Augmented Reality, Virtual Reality and Virtual Worlds the most representative technologies. Currently in the literature there are systematic reviews that address each technology separately, making evident the need for a study covering all technologies and more specifically applied to the teaching and learning of computer programming. In the present study, 64 research studies related to the teaching of computer programming at different educational levels were analyzed. Among the main results, 57 studies developed their own tool or application, which shows the little or no practical usefulness of the developments since they are only used for experiments. In addition, most of the works present the benefits of their tools and only 12 studies mention a problem when using the TIDE in the teaching of programming. Finally, the use of TIDE is highlighted mainly for teaching the topic of control structures in programming. This topic is essential since it allows students to modify the execution flow of program instructions.
Downloads
References
Abernethy, M., Sinnen, O., Adams, J., De Ruvo, G., y Giacaman, N. (2018). ParallelAR: An Augmented Reality App and Instructional Approach for Learning Parallel Programming Scheduling Concepts. 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 324-331. https://doi.org/10.1109/IPDPSW.2018.00063
Acosta, D., Álvarez, M., y Durán, E. (2021). Applying Augmented Reality to Learn Basic Concepts of Programming in U-Learning Environment. En P. Pesado y J. Eterovic (Eds.), Computer Science – CACIC 2020 (Vol. 1409, pp. 293-307). Springer International Publishing. https://doi.org/10.1007/978-3-030-75836-3_20
Agbo, F. J., Sanusi, I. T., Oyelere, S. S., y Suhonen, J. (2021). Application of Virtual Reality in Computer Science Education: A Systemic Review Based on Bibliometric and Content Analysis Methods. Education Sciences, 11(3), 142. https://doi.org/10.3390/educsci11030142
Agbo, F. J., Sunday Oyelere, S., y Bouali, N. (2020). A UML approach for designing a VR-based smart learning environment for programming education. 2020 IEEE Frontiers in Education Conference (FIE), 1-5. https://doi.org/10.1109/FIE44824.2020.9273956
Agrahari, V., y Chimalakonda, S. (2020). AST[AR] – Towards Using Augmented Reality and Abstract Syntax Trees for Teaching Data Structures To Novice Programmers. 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT), 311-315. https://doi.org/10.1109/ICALT49669.2020.00100
Alexander, B., Hou, Y., Khan, B., y Jin, J. (2022). Learn Programming In Virtual Reality? A Case Study of Computer Science Students. 2022 IEEE Global Engineering Education Conference (EDUCON), 270-275. https://doi.org/10.1109/EDUCON52537.2022.9766621
Angel Rueda, C. J. (2018). Diseño de un modelo didáctico para introducir al maestro en el uso de los mundos virtuales con fines educativos [Tesis Doctorado en Tecnología Educativa, Universidad Autónoma de Querétaro]. http://ri-ng.uaq.mx/handle/123456789/1046
Angel Rueda, C. J., Valdés Godínes, J. C., y Douglas Rudman, P. (2018). Categorizing the educational affordances of 3-dimensional immersive digital environments. Journal of Information Technology Education: Innovations in Practice, 17, 083-112. https://doi.org/10.28945/4056
Avellar, G. M. N., y Barbosa, E. F. (2019). Virtual and Augmented Reality in the Teaching and Learning of Programming: A Systematic Mapping Study. Anais do XXX Simpósio Brasileiro de Informática na Educação (SBIE 2019), 664. https://doi.org/10.5753/cbie.sbie.2019.664
Banic, A., y Gamboa, R. (2019). Visual Design Problem-based Learning in a Virtual Environment Improves Computational Thinking and Programming Knowledge. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 1588-1593. https://doi.org/10.1109/VR.2019.8798013
Barbosa Raposo, A., y Curasma, H. P. (2018). A Tool for the Introduction of Programming and Computational Thinking with Motivation using Virtual Reality. 2018 XIII Latin American Conference on Learning Technologies (LACLO), 377-384. https://doi.org/10.1109/LACLO.2018.00071
Bennedsen, J., y Caspersen, M. E. (2019). Failure rates in introductory programming: 12 years later. ACM Inroads, 10(2), 30-36. https://doi.org/10.1145/3324888
Berns, C., Chin, G., Savitz, J., Kiesling, J., y Martin, F. (2019). MYR: A Web-Based Platform for Teaching Coding Using VR. Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 77-83. https://doi.org/10.1145/3287324.3287482
Bolivar, S., Perez, D., Carrasquillo, A., Williams, A. S., Rishe, N. D., y Ortega, F. R. (2019). 3D Interaction for Computer Science Educational VR Game. En M. Antona y C. Stephanidis (Eds.), Universal Access in Human-Computer Interaction. Theory, Methods and Tools (Vol. 11572, pp. 408-419). Springer International Publishing. https://doi.org/10.1007/978-3-030-23560-4_30
Bouali, N., Nygren, E., Oyelere, S. S., Suhonen, J., y Cavalli-Sforza, V. (2019). Imikode: A VR Game to Introduce OOP Concepts. Proceedings of the 19th Koli Calling International Conference on Computing Education Research, 1-2. https://doi.org/10.1145/3364510.3366149
Boyles, B. (2017). Virtual Reality and Augmented Reality in Education. Center For Teaching Excellence, United States Military Academy, West Point, Ny, 12.
Carvalho, M. F., Aguiar, Y. P. C., y Dantas, V. F. (2017). Ensino da estrutura de repetição For em Python com realidade aumentada através do Aurasma. 12.
Cevahi̇R, H., Özdemi̇R, M., y Baturay, M. H. (2022). The Effect of Animation-Based Worked Examples Supported with Augmented Reality on the Academic Achievement, Attitude and Motivation of Students towards Learning Programming. Participatory Educational Research, 9(3), 226-247. https://doi.org/10.17275/per.22.63.9.3
Chandramouli, M., y Heffron, J. (2015). A Desktop VR-based HCI framework for programming instruction. 2015 IEEE Integrated STEM Education Conference, 129-134. https://doi.org/10.1109/ISECon.2015.7119905
Chung, C.-Y., Awad, N., y Hsiao, I.-H. (2021). Collaborative programming problemsolving in augmented reality: Multimodal analysis of effectiveness and group collaboration. Australasian Journal of Educational Technology, 37(5), 17-31. https://doi.org/10.14742/ajet.7059
Chung, C.-Y., y Hsiao, I.-H. (2020). Computational Thinking in Augmented Reality: An Investigation of Collaborative Debugging Practices. 2020 6th International Conference of the Immersive Learning Research Network (ILRN), 54-61. https://doi.org/10.23919/iLRN47897.2020.9155152
Cleto, B., Sylla, C., Ferreira, L., y Moura, J. M. (2020). “Play and Learn”: Exploring CodeCubes. En C. Sylla y I. Iurgel (Eds.), Technology, Innovation, Entrepreneurship and Education (Vol. 307, pp. 34-42). Springer International Publishing. https://doi.org/10.1007/978-3-030-40180-1_4
da Cruz Alves, N., Gresse von Wangenheim, C., y Rossa Hauck, J. C. (2020). Teaching Programming to Novices: A Large-scale Analysis of App Inventor Projects. 2020 XV Conferencia Latinoamericana de Tecnologias de Aprendizaje (LACLO), 1-10. https://doi.org/10.1109/LACLO50806.2020.9381172
Dass, N., Kim, J., Ford, S., Agarwal, S., y Chau, D. H. (Polo). (2018). Augmenting Coding: Augmented Reality for Learning Programming. Proceedings of the Sixth International Symposium of Chinese CHI, 156-159. https://doi.org/10.1145/3202667.3202695
De Siqueira, A. G., Feijoo-Garcia, P. G., y Stanley, S. P. (2021). BlockXR: A Novel Tangible Block-Based Programming Platform. 2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 1-4. https://doi.org/10.1109/VL/HCC51201.2021.9576344
Del Bosque, L., Martinez, R., y Torres, J. L. (2015). Decreasing Failure in Programming Subject with Augmented Reality Tool. Procedia Computer Science, 75, 221-225. https://doi.org/10.1016/j.procs.2015.12.241
Deng, X., Wang, D., Jin, Q., y Sun, F. (2019). ARCat: A Tangible Programming Tool for DFS Algorithm Teaching. Proceedings of the 18th ACM International Conference on Interaction Design and Children, 533-537. https://doi.org/10.1145/3311927.3325308
Edifor, E., Swenson, A., y Aiyenitaju, O. (2021). A Virtual Reality Framework for Upskilling in Computer Programming in the Business Context. En M. C. tom Dieck, T. H. Jung, y S. M. C. Loureiro (Eds.), Augmented Reality and Virtual Reality (pp. 181-192). Springer International Publishing. https://doi.org/10.1007/978-3-030-68086-2_14
Esteves, A. M. da S., Santana, A. L. M., y Lyra, R. (2019). Use of Augmented Reality for Computational Thinking Stimulation through Virtual. 2019 21st Symposium on Virtual and Augmented Reality (SVR), 102-106. https://doi.org/10.1109/SVR.2019.00031
Fernando Batista, A., Thiry, M., Queiroz Gonçalves, R., y Fernandes, A. (2020). Using Technologies as Virtual Environments for Computer Teaching: A Systematic Review. Informatics in Education, 201-221. https://doi.org/10.15388/infedu.2020.10
Figueiredo, M., Cifredo-Chacón, M.-Á., y Gonçalves, V. (2016). Learning Programming and Electronics with Augmented Reality. En M. Antona y C. Stephanidis (Eds.), Universal Access in Human-Computer Interaction. Users and Context Diversity (Vol. 9739, pp. 57-64). Springer International Publishing. https://doi.org/10.1007/978-3-319-40238-3_6
Gardeli, A., y Vosinakis, S. (2019). ARQuest: A Tangible Augmented Reality Approach to Developing Computational Thinking Skills. 2019 11th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), 1-8. https://doi.org/10.1109/VS-Games.2019.8864603
Gardeli, A., y Vosinakis, S. (2020). The Effect of Tangible Augmented Reality Interfaces on Teaching Computational Thinking: A Preliminary Study. En M. E. Auer y T. Tsiatsos (Eds.), The Challenges of the Digital Transformation in Education (Vol. 916, pp. 673-684). Springer International Publishing. https://doi.org/10.1007/978-3-030-11932-4_63
Giannakos, M. N., Pappas, I. O., Jaccheri, L., y Sampson, D. G. (2017). Understanding student retention in computer science education: The role of environment, gains, barriers and usefulness. Education and Information Technologies, 22(5), 2365-2382. https://doi.org/10.1007/s10639-016-9538-1
Goyal, S., Vijay, R. S., Monga, C., y Kalita, P. (2016). Code Bits: An Inexpensive Tangible Computational Thinking Toolkit For K-12 Curriculum. Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, 441-447. https://doi.org/10.1145/2839462.2856541
Gusenbauer, M., y Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta‐analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Research Synthesis Methods, 11(2), 181-217. https://doi.org/10.1002/jrsm.1378
Hartley, M. D., Ludlow, B. L., y Duff, M. C. (2015). Second Life®: A 3D Virtual Immersive Environment for Teacher Preparation Courses in a Distance Education Program. Rural Special Education Quarterly, 34(3), 21-25. https://doi.org/10.1177/875687051503400305
Hein, R. M., Wienrich, C., Latoschik, M. E., Human-Computer Interaction, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, y Human-Technique Systems, Julius-Maximilians-Universität Würzburg, Oswald-Külpe-Weg 82, D-97074 Würzburg. (2021). A systematic review of foreign language learning with immersive technologies (2001-2020). AIMS Electronics and Electrical Engineering, 5(2), 117-145. https://doi.org/10.3934/electreng.2021007
Horst, R., Naraghi-Taghi-Off, R., Diez, S., Uhmann, T., Müller, A., y Dörner, R. (2019). FunPlogs – A Serious Puzzle Mini-game for Learning Fundamental Programming Principles Using Visual Scripting. En G. Bebis, R. Boyle, B. Parvin, D. Koracin, D. Ushizima, S. Chai, S. Sueda, X. Lin, A. Lu, D. Thalmann, C. Wang, y P. Xu (Eds.), Advances in Visual Computing (Vol. 11844, pp. 494-504). Springer International Publishing. https://doi.org/10.1007/978-3-030-33720-9_38
Im, H., y Rogers, C. (2021). Draw2Code: Low-Cost Tangible Programming for Creating AR Animations. Interaction Design and Children, 427-432. https://doi.org/10.1145/3459990.3465189
Ishihara, M., y Rattanachinalai, P. (2022). Learning basic concept of computer programming with path-finding task in ar and its properties. Education and Information Technologies, 27(1), 719-742. https://doi.org/10.1007/s10639-020-10416-9
Jin, Q., Liu, Y., Yuan, Y., Yarosh, L., y Rosenberg, E. S. (2020). VWorld: An immersive VR system for learning programming. Proceedings of the 2020 ACM Interaction Design and Children Conference: Extended Abstracts, 235-240. https://doi.org/10.1145/3397617.3397843
Jin, Q., Wang, D., Deng, X., Zheng, N., y Chiu, S. (2018). AR-maze: A tangible programming tool for children based on AR technology. Proceedings of the 17th ACM Conference on Interaction Design and Children, 611-616. https://doi.org/10.1145/3202185.3210784
Kambayashi, Y., Furukawa, K., y Takimoto, M. (2017). Design of Tangible Programming Environment for Smartphones. En C. Stephanidis (Ed.), HCI International 2017 – Posters’ Extended Abstracts (Vol. 714, pp. 448-453). Springer International Publishing. https://doi.org/10.1007/978-3-319-58753-0_64
Kanika, Chakraverty, S., y Chakraborty, P. (2020). Tools and Techniques for Teaching Computer Programming: A Review. Journal of Educational Technology Systems, 49(2), 170-198. https://doi.org/10.1177/0047239520926971
Kazimoglu, C. (2020). Enhancing confidence in using computational thinking skills via playing a serious game: A case study to increase motivation in learning computer programming. IEEE Access, 8, 221831-221851. https://doi.org/10.1109/ACCESS.2020.3043278
Kim, J., Agarwal, S., Marotta, K., Li, S., Leo, J., y Chau, D. H. (2019). Mixed Reality for Learning Programming. Proceedings of the 18th ACM International Conference on Interaction Design and Children, 574-579. https://doi.org/10.1145/3311927.3325335
Kitchenham, B., y Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering , version 2.3 (EBSE Technical Report EBSE-2007-01; p. 65). School of Computer Science and Mathematics Keele University.
Liberatore, M. J., y Wagner, W. P. (2021). Virtual, mixed, and augmented reality: A systematic review for immersive systems research. Virtual Reality, 25(3), 773-799. https://doi.org/10.1007/s10055-020-00492-0
Lin, P.-H., y Chen, S.-Y. (2020). Design and Evaluation of a Deep Learning Recommendation Based Augmented Reality System for Teaching Programming and Computational Thinking. IEEE Access, 8, 45689-45699. https://doi.org/10.1109/ACCESS.2020.2977679
Magnenat, S., Ben-Ari, M., Klinger, S., y Sumner, R. W. (2015). Enhancing Robot Programming with Visual Feedback and Augmented Reality. Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education, 153-158. https://doi.org/10.1145/2729094.2742585
Masso, N., y Grace, L. (2011). Shapemaker: A game-based introduction to programming. 2011 16th International Conference on Computer Games (CGAMES), 168-171. https://doi.org/10.1109/CGAMES.2011.6000334
Mehmood, E., Abid, A., Farooq, M. S., y Nawaz, N. A. (2020). Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course. IEEE Access, 8, 125961-125981. https://doi.org/10.1109/ACCESS.2020.3008321
Mesia, N. S., Sanz, C., y Gorga, G. (2016). Augmented Reality for Programming Teaching. Student Satisfaction Analysis. 2016 International Conference on Collaboration Technologies and Systems (CTS), 165-171. https://doi.org/10.1109/CTS.2016.0045
Mina, D., Salah, J., y Abdennadher, S. (2022). ARcode: Programming for Youngsters Through AR. En F. De la Prieta, R. Gennari, M. Temperini, T. Di Mascio, P. Vittorini, Z. Kubincova, E. Popescu, D. Rua Carneiro, L. Lancia, y A. Addone (Eds.), Methodologies and Intelligent Systems for Technology Enhanced Learning, 11th International Conference (Vol. 326, pp. 65-74). Springer International Publishing. https://doi.org/10.1007/978-3-030-86618-1_7
Mystakidis, S., Christopoulos, A., y Pellas, N. (2021). A systematic mapping review of augmented reality applications to support STEM learning in higher education. Education and Information Technologies. https://doi.org/10.1007/s10639-021-10682-1
Nesenbergs, K., Abolins, V., Ormanis, J., y Mednis, A. (2020). Use of Augmented and Virtual Reality in Remote Higher Education: A Systematic Umbrella Review. Education Sciences, 11(1), 8. https://doi.org/10.3390/educsci11010008
Oberhauser, R., y Lecon, C. (2017). Virtual Reality Flythrough of Program Code Structures. Proceedings of the Virtual Reality International Conference - Laval Virtual 2017, 1-4. https://doi.org/10.1145/3110292.3110303
Ortega, F. R., Bolivar, S., Bernal, J., Galvan, A., Tarre, K., Rishe, N., y Barreto, A. (2017). Towards a 3D Virtual Programming Language to increase the number of women in computer science education. 2017 IEEE Virtual Reality Workshop on K-12 Embodied Learning through Virtual & Augmented Reality (KELVAR), 1-6. https://doi.org/10.1109/KELVAR.2017.7961558
Parmar, D., Isaac, J., Babu, S. V., D’Souza, N., Leonard, A. E., Jorg, S., Gundersen, K., y Daily, S. B. (2016). Programming moves: Design and evaluation of applying embodied interaction in virtual environments to enhance computational thinking in middle school students. 2016 IEEE Virtual Reality (VR), 131-140. https://doi.org/10.1109/VR.2016.7504696
Pellas, N., Kazanidis, I., Konstantinou, N., y Georgiou, G. (2017). Exploring the educational potential of three-dimensional multi-user virtual worlds for STEM education: A mixed-method systematic literature review. Education and Information Technologies, 22(5), 2235-2279. https://doi.org/10.1007/s10639-016-9537-2
Pellas, N., y Vosinakis, S. (2018a). Learning to Think and Practice Computationally via a 3D Simulation Game. En M. E. Auer y T. Tsiatsos (Eds.), Interactive Mobile Communication Technologies and Learning (Vol. 725, pp. 550-562). Springer International Publishing. https://doi.org/10.1007/978-3-319-75175-7_54
Pellas, N., y Vosinakis, S. (2018b). The effect of simulation games on learning computer programming: A comparative study on high school students’ learning performance by assessing computational problem-solving strategies. Education and Information Technologies, 23(6), 2423-2452. https://doi.org/10.1007/s10639-018-9724-4
Pierre, F., Zhao, F., y Koufakou, A. (2020). Learning programming in virtual reality environments. En X. Fang (Ed.), HCI in Games (Vol. 12211, pp. 448-457). Springer International Publishing. https://doi.org/10.1007/978-3-030-50164-8_33
Pirker, J., Dengel, A., Holly, M., y Safikhani, S. (2020). Virtual Reality in Computer Science Education: A Systematic Review. 26th ACM Symposium on Virtual Reality Software and Technology, 1-8. https://doi.org/10.1145/3385956.3418947
Pratisto, E. H., Thompson, N., y Potdar, V. (2022). Immersive technologies for tourism: A systematic review. Information Technology & Tourism, 24(2), 181-219. https://doi.org/10.1007/s40558-022-00228-7
Quaye, A. M., y Dasuki, S. I. (2017). A Computational Approach to Learning Programming Using Visual Programming in a Developing Country University. En P. J. Rich y C. B. Hodges (Eds.), Emerging Research, Practice, and Policy on Computational Thinking (pp. 121-134). Springer International Publishing. https://doi.org/10.1007/978-3-319-52691-1_8
Quéau, P. (1995). Lo virtual: Virtudes y vértigos. Paidós.
Radianti, J., Majchrzak, T. A., Fromm, J., y Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education, 147, 103778. https://doi.org/10.1016/j.compedu.2019.103778
Ramos, C., y Patino, T. (2016). Program with Ixquic: Educative Games and Learning in Augmented and Virtual Environments. 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), 1-2. https://doi.org/10.1109/VS-GAMES.2016.7590359
Rodger, S. H., Brown, D., Hoyle, M., MacDonald, D., Marion, M., Onstwedder, E., Onwumbiko, B., y Ward, E. (2014). Weaving computing into all middle school disciplines. Proceedings of the 2014 Conference on Innovation & Technology in Computer Science Education - ITiCSE ’14, 207-212. https://doi.org/10.1145/2591708.2591754
Sajjanhar, A., y Faulkner, J. (2019). Second life as a learning environment for computer programming. Education and Information Technologies, 24(4), 2403-2428. https://doi.org/10.1007/s10639-019-09879-2
Schez-Sobrino, S., García, M. Á., Lacave, C., Molina, A. I., Glez-Morcillo, C., Vallejo, D., y Redondo, M. Á. (2021). A modern approach to supporting program visualization: From a 2D notation to 3D representations using augmented reality. Multimedia Tools and Applications, 80(1), 543-574. https://doi.org/10.1007/s11042-020-09611-0
Schez-Sobrino, S., Vallejo, D., Glez-Morcillo, C., Redondo, M. Á., y Castro-Schez, J. J. (2020). RoboTIC: A serious game based on augmented reality for learning programming. Multimedia Tools and Applications, 79(45-46), 34079-34099. https://doi.org/10.1007/s11042-020-09202-z
Segura, R. J., Pino, F. J., Ogáyar, C. J., y Rueda, A. J. (2020). VR‐OCKS: A virtual reality game for learning the basic concepts of programming. Computer Applications in Engineering Education, 28(1), 31-41. https://doi.org/10.1002/cae.22172
Sharma, S., y Ossuetta, E. (2017). Virtual Reality Instructional Modules in Education Based on Gaming Metaphor. Electronic Imaging, 2017(3), 11-18. https://doi.org/10.2352/ISSN.2470-1173.2017.3.ERVR-090
Simon, Luxton-Reilly, A., Ajanovski, V. V., Fouh, E., Gonsalvez, C., Leinonen, J., Parkinson, J., Poole, M., y Thota, N. (2019). Pass rates in introductory programming and in other STEM disciplines. Proceedings of the Working Group Reports on Innovation and Technology in Computer Science Education, 53-71. https://doi.org/10.1145/3344429.3372502
Singh, G. (2017). Using virtual reality for scaffolding computer programming learning. Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, 1-2. https://doi.org/10.1145/3139131.3141225
Sittiyuno, S., y Chaipah, K. (2019). ARCode: Augmented Reality Application for Learning Elementary Computer Programming. 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 32-37. https://doi.org/10.1109/JCSSE.2019.8864173
Steffen, J. H., Gaskin, J. E., Meservy, T. O., Jenkins, J. L., y Wolman, I. (2019). Framework of affordances for virtual reality and augmented reality. Journal of Management Information Systems, 36(3), 683-729. https://doi.org/10.1080/07421222.2019.1628877
Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 73-93. https://doi.org/10.1111/j.1460-2466.1992.tb00812.x
Stigall, J., y Sharma, S. (2017). Virtual reality instructional modules for introductory programming courses. 2017 IEEE Integrated STEM Education Conference (ISEC), 34-42. https://doi.org/10.1109/ISECon.2017.7910245
Suh, A., y Prophet, J. (2018). The state of immersive technology research: A literature analysis. Computers in Human Behavior, 86, 77-90. https://doi.org/10.1016/j.chb.2018.04.019
Swidan, A., Hermans, F., y Smit, M. (2018). Programming Misconceptions for School Students. Proceedings of the 2018 ACM Conference on International Computing Education Research, 151-159. https://doi.org/10.1145/3230977.3230995
T. Azuma, R. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 8(2-3), 355-385.
Tan, K. S. T., y Lee, Y. (2017). An Augmented Reality Learning System for Programming Concepts. En K. Kim y N. Joukov (Eds.), Information Science and Applications 2017 (Vol. 424, pp. 179-187). Springer Singapore. https://doi.org/10.1007/978-981-10-4154-9_22
Tanielu, T., ’Akau’ola, R., Varoy, E., y Giacaman, N. (2019). Combining Analogies and Virtual Reality for Active and Visual Object-Oriented Programming. Proceedings of the ACM Conference on Global Computing Education, 92-98. https://doi.org/10.1145/3300115.3309513
Theethum, T., Arpornrat, A., y Vittayakorn, S. (2021). Thinkercise: An educational VR game for Python programming. 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 439-442. https://doi.org/10.1109/ECTI-CON51831.2021.9454730
Theodoropoulos, A., y Lepouras, G. (2021). Augmented Reality and programming education: A systematic review. International Journal of Child-Computer Interaction, 30, 100335. https://doi.org/10.1016/j.ijcci.2021.100335
Vincur, J., Konopka, M., Tvarozek, J., Hoang, M., y Navrat, P. (2017). Cubely: Virtual reality block-based programming environment. Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, 1-2. https://doi.org/10.1145/3139131.3141785
Vosinakis, S., Anastassakis, G., y Koutsabasis, P. (2018). Teaching and learning logic programming in virtual worlds using interactive microworld representations: Teaching logic programming in virtual worlds. British Journal of Educational Technology, 49(1), 30-44. https://doi.org/10.1111/bjet.12531
Vosinakis, S., Koutsabasis, P., y Anastassakis, G. (2014). A Platform for Teaching Logic Programming Using Virtual Worlds. 2014 IEEE 14th International Conference on Advanced Learning Technologies, 657-661. https://doi.org/10.1109/ICALT.2014.193
Wee, C., y Yap, K. M. (2021). Design and Analysis of a Virtual Reality Game to Address Issues in Introductory Programming Learning. En N. Shaghaghi, F. Lamberti, B. Beams, R. Shariatmadari, y A. Amer (Eds.), Intelligent Technologies for Interactive Entertainment (Vol. 377, pp. 243-254). Springer International Publishing. https://doi.org/10.1007/978-3-030-76426-5_16
Wee, C., Yap, K. M., y Lim, W. N. (2022). iProgVR: Design of A Virtual Reality Environment to Improve Introductory Programming Learning. IEEE Access, 1-1. https://doi.org/10.1109/ACCESS.2022.3204392
Yi-Ming Kao, G., y Ruan, C.-A. (2022). Designing and evaluating a high interactive augmented reality system for programming learning. Computers in Human Behavior, 132, 107245. https://doi.org/10.1016/j.chb.2022.107245
Zhang, M., Zhang, Z., Chang, Y., Aziz, E.-S., Esche, S., y Chassapis, C. (2018). Recent developments in game-based virtual reality educational laboratories using the Microsoft kinect. International Journal of Emerging Technologies in Learning (IJET), 13(01), 138. https://doi.org/10.3991/ijet.v13i01.7773
Copyright (c) 2023 Distance Education Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.