Computational Literacy: Unplugged musical activities around Bebras International Challenge

Authors

DOI: https://doi.org/10.6018/red.540191
Keywords: digital literacy, computational thinking, music education, primary education, Bebras problems, STEAM

Abstract

Computer Literacy is a reality in current educational legislation. Within the STEAM competence approach, music education and the development of Computational Thinking (CT) are located in this discipline. In this work, unplugged musical activities are designed based on the Bebras challenges, and their effectiveness is evaluated in terms of CT development in students. A quasi-experimental study was carried out with pre-post test measures in a group of 220 Primary School students (experimental, N = 170; control, N = 50). The experimental group performed three blocks of unplugged musical activities. Computational Thinking Test using Bebras Problems (Lockwood and Moone, 2018) was used as an instrument. Variables of gender, course, environment and academic ability were taken into account. The results show a significant increase in CT in the experimental group at a general level and in the Bebras activities of medium and advanced levels of difficulty. Schoolchildren from the rural context showed higher scores in CT development compared to the urban one. No significant differences are observed in the rest of the variables. Finally, a higher level of correct answers was observed in "easy" activities, greater completion of "medium" activities and a decrease in both in "advanced" activities.

Downloads

Download data is not yet available.

References

Alcázar, C. (2019). Música Encriptada. Eufonía: Didáctica de la Música, 81, 76-77. Editorial Graó.

Bassachs, M., Cañabate, D., Nogué, L., Serra, T., Bubnys, R., & Colomer, J. (2020). Fostering critical reflection in primary education through STEAM approaches. Education Sciences, 10(12), 1-14. https://doi.org/10.3390/educsci10120384.

Bell, T., y Vahrenhold, J. (2018). CS unplugged—how is it used, and does it work?. In Adventures between lower bounds and higher altitudes, 497-521. Springer, Cham. https://link.springer.com/content/pdf/10.1007/978-3-319-98355-4_29.pdf

Brackmann, C. P., Moreno-León, J., Román-González, M., Casali, A., Robles, G., & Barone, D. (2017). Development of computational thinking skills through unplugged activities in primary school. Paper presented at the ACM International Conference Proceeding Series, 65-72. https://doi:10.1145/3137065.3137069

Burnard, P., Colucci-Gray, L., & Cooke, C. (2022). Transdisciplinarity: Re-visioning how sciences and arts together can enact democratizing creative educational experiences. Review of Research in Education, 46(1), 166-197. https://doi.org/10.3102/0091732X221084323.

Chiazzese, G., Arrigo, M., Chifari, A., Lonati, V., & Tosto, C. (2018). Exploring the effect of a robotics laboratory on computational thinking skills in primary school children using the bebras tasks. Paper presented at the ACM International Conference Proceeding Series, 27-30. https://doi.org/10.1145/3284179.3284186

Combéfis, S., & Stupurienė, G. (2020). Bebras based activities for computer science education: Review and perspectives. En Kori, K., Laanpere, M. (eds) Informatics in Schools. Engaging Learners in Computational Thinking, 12518. https://doi.org/10.1007/978-3-030-63212-0_2

Dagiene, V., & Stupuriene, G. (2017). Algorithms unplugged: a card game of the Bebras-like tasks for high schools students. In The 10th International Conference on Informatics in Schools (ISSEPS 2017). http://issep2017.cs.helsinki.fi/files/short/algorithms-unplugged-game-of-bebras-like-tasks-for-hs-students.pdf

Datzko, C. (2019). The genesis of a bebras task. ACM International Conference Proceeding Series, 65 – 728. https://doi.org/10.1007/978-3-030-33759-9_19

Delal, H., & Oner, D. (2020). Developing middle school students' computational thinking skills using unplugged computing activities. Informatics in Education, 19(1), 1-13. https://doi.org/10.15388/INFEDU.2020.01

Del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational thinking through unplugged activities in early years of primary education. Computers and Education, 150. https://doi.org/10.1016/j.compedu.2020.103832

Del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2022). Promoting second graders’ attitudes towards technology through computational thinking instruction. International Journal of Technology and Design Education, 32(4), 2019-2037. https://doi.org/10.1007/s10798-021-09679-1

Duo-Terron, P., Hinojo-Lucena, F., Moreno-Guerrero, A., & López-Núñez, J. (2022). STEAM in primary education. impact on linguistic and mathematical competences in a disadvantaged context. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.792656.

Herro, D., Quigley, C., Plank, H., Abimbade, O., & Owens, A. (2022). Instructional practices promoting computational thinking in STEAM elementary classrooms. Journal of Digital Learning in Teacher Education, 1-15. https://doi.org/10.1080/21532974.2022.2087125

Jagust, T., Cvetkovic-Lay, J., Krzic, A. S., & Sersic, D. (2018). Using robotics to foster creativity in early gifted education. Advances in Intelligent Systems and Computing, 630, 126-131. https://doi.org/10.1007/978-3-319-62875-2_11

Jesús, A. M. D., & Silveira, I. F. (2021). Marco de aprendizaje colaborativo basado en videojuegos para el desarrollo del pensamiento computacional. Revista Facultad De Ingenieria, 99, 113-123. https://doi.org/10.17533/udea.redin.20200690.

Kert, S. B., Yeni, S., & Fatih Erkoç, M. (2022). Enhancing computational thinking skills of students with disabilities. Instructional Science, 50(4), 625-651. https://doi.org/10.1007/s11251-022-09585-6

Krüger, W., & Chiappe, A. (2021). Habilidades del siglo XXI y entornos de aprendizaje STEAM: una revisión. Revista de Educación a Distancia (RED), 21(68). https://doi.org/10.6018/red.470461

Lehtimaki, T., Monahan, R., Mooney, A., Casey, K. & Naughton, T. J. (2022). Bebras-inspired Computational Thinking Primary School Resources Co-created by Computer Science Academics and Teachers In Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE 1, 207-213. https://doi.org/10.1145/3502718.3524804.

Leonard, J., Thomas, J. O., Ellington, R., Mitchell, M. B., & Fashola, O. S. (2021). Fostering computational thinking among underrepresented students in stem: Strategies for supporting racially equitable computing. Fostering computational thinking among underrepresented students in STEM: Strategies for supporting racially equitable computing, pp. 1-201. https://doi.org/10.4324/9781003024552

Leroy, A., & Romero, M. (2021). Teachers’ Creative Behaviors in STEAM Activities with Modular Robotics. Frontiers in Education, 6, 642147. https://doi.org/10.3389/feduc.2021.642147

Levinson, T., Hunt, L., & Hassenfeld, Z. (2021). Including students with disabilities in the coding classroom. Teaching computational thinking and coding to young children, pp. 236-248. https://doi.org/10.4018/978-1-7998-7308-2.ch012

Li, J., Luo, H., Zhao, L., Zhu, M., Ma, L., & Liao, X. (2022). Promoting STEAM education in primary school through cooperative teaching: A design-based research study. Sustainability (Switzerland), 14(16), 10333. https://doi.org/10.3390/su141610333

Lockwood, J., & Mooney, A. (2018). Developing a computational thinking test using Bebras problems. In CEUR Workshop Proceedings,219. http://ceur-ws.org/Vol-2190/TACKLE_2018_paper_1.pdf

Master, A., Meltzoff, A. N., & Cheryan, S. (2021). Gender stereotypes about interests start early and cause gender disparities in computer science and engineering. Proceedings of the National Academy of Sciences of the United States of America, 118(48), e2100030118. https://doi.org/10.1073/pnas.2100030118

Muñoz-Repiso, A. G., & Caballero-González, Y. (2019). Robotics to develop computational thinking in early childhood education. Comunicar, 27(59), 63-72. https://doi.org/10.3916/C59-2019-06.

Muriño, A. y Riaño, M. E. (2022). Monografía Música y STEAM. Eufonía: Didáctica de la Música, 91. Editorial Graó.

Oliveira, A. L. S., Andrade, W. L., Guerrero, D. D. S., & Melo, M. R. A. (2021). How do bebras tasks explore algorithmic thinking skill in a computational thinking contest? Paper presented at the Proceedings - Frontiers in Education Conference, FIE, 2021-October. https://doi.org/10.1109/FIE49875.2021.9637151

Payne, L., Tawfik, A., & Olney, A. M. (2022). Computational thinking in education: Past and present. TechTrends, 66(5), 745-747. https://doi:10.1007/s11528-022-00766-1

Peel, A., Sadler, T. D., & Friedrichsen, P. (2022). Algorithmic explanations: An unplugged instructional approach to integrate science and computational thinking. Journal of Science Education and Technology, 31(4), 428-441. https://doi.org/10.1007/s10956-022-09965-0

Petrie, C. (2022). Interdisciplinary computational thinking with music and programming: A case study on algorithmic music composition with sonic pi. Computer Science Education, 32(2), 260-282. https://doi:10.1080/08993408.2021.1935603

Rachmatullah, A., Vandenberg, J., & Wiebe, E. (2022). Toward more generalizable CS and CT instruments: Examining the interaction of country and gender at the middle grades. Paper presented at the Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE 1, 179-185. https://doi.org/10.1145/3502718.3524790.

Román-González, M., Moreno-León, J., & Robles, G. (2017). Complementary tools for computational thinking assessment. Paper presented at the Proceedings of International Conference on Computational Thinking Education, 154-159. https://library.oapen.org/bitstream/handle/20.500.12657/23182/1006971.pdf?sequence=1#page=85

Román-González, M., Pérez-González, J., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? criterion validity of the computational thinking test. Computers in Human Behavior, 72, 678-691. https://doi.org/10.1016/j.chb.2016.08.047

Romo, N. M. (2018). ICT and pupils of rural areas: Between the digital gap and inclusive education. Bordon, Revista De Pedagogia, 69(3), 41-56. https://doi.org/10.13042/Bordon.2017.52401

Rojas López, A., & García-Peñalvo, F. J. (2021). Initial performance analysis in the evaluation of computational thinking from a gender perspective in higher education. Paper presented at the ACM International Conference Proceeding Series, 109-114. https://doi.org/10.1145/3486011.3486429

Carlos Torrego-Seijo, J., Caballero-García, P. Á., & Lorenzo-Llamas, E. M. (2021). The effects of cooperative learning on trait emotional intelligence and academic achievement of spanish primary school students. British Journal of Educational Psychology, 91(3), 928-949. https://doi.org/10.1111/bjep.12400

Torres-Torres, Y., Román-González, M., & Pérez-González, J. (2021). Specific didactic strategies used for the development of computational thinking in the female collective in primary and secondary education: A systematic review protocol. ACM International Conference Proceeding Series, 25-29. https://doi.org/10.1145/3486011.3486414

Vandenberg, J., Rachmatullah, A., Lynch, C., Boyer, K. E., & Wiebe, E. (2021). Interaction effects of race and gender in elementary CS attitudes: A validation and cross-sectional study. International Journal of Child-Computer Interaction, 29. https://doi.org/10.1016/j.ijcci.2021.100293

Yuliana, I., Hermawan, H. D., Prayitno, H. J., Ratih, K., Adhantoro, M. S., Hidayati, H. y Ibrahim, M. H. (2021). Computational Thinking Lesson in Improving Digital Literacy for Rural Area Children via CS Unplugged. In Journal of Physics: Conference Series, 1720(1), 012009. https://doi.org/10.1088/1742-6596/1720/1/012009.

Zapata-Ros, M. (2019). Pensamiento computacional desenchufado. Education in the Knowledge Society (EKS), 20, 29. https://doi.org/10.14201/eks2019_20_a18

Zhan, Z., He, W., Yi, X., & Ma, S. (2022). Effect of unplugged programming teaching aids on Children’s computational thinking and classroom interaction: With respect to Piaget’s four stages theory. Journal of Educational Computing Research, 60(5), 1277-1300. https://doi.org/10.1177/07356331211057143

Published
31-01-2023
How to Cite
Sepúlveda Durán, C. M., García Fernández, C. M. ., & Arévalo Galán, A. (2023). Computational Literacy: Unplugged musical activities around Bebras International Challenge. Distance Education Journal, 23(73). https://doi.org/10.6018/red.540191