Panorama actual de la investigación en educación a distancia: un estudio bibliométrico

Autores/as

DOI: https://doi.org/10.6018/red.610861
Palabras clave: SciMAT, Educación a Distancia, e-learning, bibliometría, Mapeo científico

Resumen

En este artículo se analiza la evolución de la educación a distancia, la producción de sus investigadores y su impacto. Para ello, se han aplicado técnicas bibliométricas, como el análisis de rendimiento y el mapeo científico, a 40 revistas seleccionadas como las más relevantes en la base de datos de Scopus con un filtro temporal de 2018 a 2022.  El resultado de la búsqueda fue 12,947 artículos analizados con la herramienta de análisis de mapeo científico (SciMAT). Por un lado, el análisis de rendimiento identificó un aumento significativo en el número de publicaciones, de 1,943 en 2018 a 3,512 en 2022 (80,75%), con una notable concentración de revistas en Europa (55%) y América del Norte (35%); por otro lado, la afiliación de los 10 autores más impactantes (citas, índice h y FWCI) se encuentra predominantemente en Asia. Mediante el mapeo científico identifica dos temas candentes: la pandemia de COVID-19, de la que se intensificó la publicación en 2020, y la realidad virtual, que apareció en 2022. Los temas relacionados con los estudiantes son de gran interés pora la comunidad y tienen un papel fundamental en las publicaciones. Finalmente, se detectó que existe una consolidación de las palabras clave y que hay una interconexión entre varios temas implicando un enfoque multidisciplinario en el estudio de la educación a distancia.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adedoyin, O. B., & Soykan, E. (2020). Covid-19 pandemic and online learning: the challenges and opportunities. Interactive Learning Environments. https://doi.org/10.1080/10494820.2020.1813180

Akçayır, G., & Akçayır, M. (2018). The flipped classroom: A review of its advantages and challenges. Computers and Education, 126, 334–345. https://doi.org/10.1016/j.compedu.2018.07.021

Almaiah, M. A., Al-Khasawneh, A., & Althunibat, A. (2020). Exploring the critical challenges and factors influencing the E-learning system usage during the COVID-19 pandemic. Education and Information Technologies, 25(6), 5261–5280. https://doi.org/10.1007/s10639-020-10219-y

Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255. https://doi.org/10.1002/aris.1440370106

Bitzenbauer, P. (2021). Quantum physics education research over the last two decades: a bibliometric analysis. Education Sciences, 11(11), 699. https://doi.org/10.3390/educsci11110699

Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics, 22(1), 155–205. https://doi.org/10.1007/BF02019280

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011a). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166. https://doi.org/10.1002/asi.21525

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011b). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525

Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630. https://doi.org/10.1002/asi.22688

Cobo, M. J., F. Chiclana, A. Collop, J. de Ona and E. Herrera-Viedma, "A Bibliometric Analysis of the Intelligent Transportation Systems Research Based on Science Mapping," in IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 2, pp. 901-908, April 2014. https://doi.org/10.1109/TITS.2013.2284756

Coulter, N., Monarch, I., & Konda, S. (1998). Software Engineering as Seen through Its Research Literature : A Study in Co-Word Analysis. Journal of the American Society for Information Science, 4571(January). https://doi.org/10.1002/(SICI)1097-4571(1998)49

Debackere, K., Verbeek, A., Luwel, M., & Zimmermann, E. (2002). Measuring progress and evolution in science and technology - II: The multiple uses of technometric indicators. International Journal of Management Reviews, 4(3), 213–231. https://doi.org/10.1111/1468-2370.00085

Dorta-González, P., & Dorta-González, M. I. (2010). Indicador bibliométrico basado en el índice h. Revista Espanola de Documentacion Cientifica, 33(2), 225–245. https://doi.org/10.3989/redc.2010.2.733

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133(April), 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Donthu, N., Reinartz, W., Kumar, S., & Pattnaik, D. (2021). A retrospective review of the first 35 years of the International Journal of Research in Marketing. International Journal of Research in Marketing, 38(1), 232–269. https://doi.org/https://doi.org/10.1016/j.ijresmar.2020.10.006

Dziuban, C., Graham, C. R., Moskal, P. D., Norberg, A., & Sicilia, N. (2018). Blended learning: the new normal and emerging technologies. International Journal of Educational Technology in Higher Education, 15(1). https://doi.org/10.1186/s41239-017-0087-5

Eck, N. J. van, & LudoWaltman. (2009). How to Normalize Cooccurrence Data? An Analysis of SomeWell-Known Similarity Measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651. https://doi.org/10.1002/asi

Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003

Guerrero-Bote, V. P., & Moya-Anegón, F. (2012). A further step forward in measuring journals' scientific prestige: The SJR2 indicator. Journal of Informetrics, 6(4), 674–688. https://doi.org/10.1016/j.joi.2012.07.001

Herrera-Viedma, E., López-Robles, J. R., Guallar, J., & Cobo, M. J. (2020). Global trends in coronavirus research at the time of COVID-19: A general bibliometric approach and content analysis using SciMAT. Profesional de La Informacion, 29(3), 1–20. https://doi.org/10.3145/epi.2020.may.22

Hossain, S., Batcha, M. S., Atoum, I., Ahmad, N., & Al-Shehri, A. (2022). Bibliometric Analysis of the Scientific Research on Sustainability in the Impact of Social Media on Higher Education during the COVID-19 Pandemic. Sustainability (Switzerland), 14(24). https://doi.org/10.3390/su142416388

Ibáñez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers and Education, 123, 109–123. https://doi.org/10.1016/j.compedu.2018.05.002

Jensen, L., & Konradsen, F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515–1529. https://doi.org/10.1007/s10639-017-9676-0

Khan, F. M., & Gupta, Y. (2022). A bibliometric analysis of mobile learning in the education sector. Interactive Technology and Smart Education, 19(3), 338–359. https://doi.org/10.1108/ITSE-03-2021-0048

Machado, C. F., & Davim, J. P. (2022). Higher Education for Sustainability: A Bibliometric Approach—What, Where and Who Is Doing Research in This Subject? Sustainability (Switzerland), 14(8). https://doi.org/10.3390/su14084482

Marín Suelves, D., Cuevas Monzonís, N., & Gabarda Méndez, V. (2021). Competencia digital ciudadana: análisis de tendencias en el ámbito educativo. RIED. Revista Iberoamericana de Educación a Distancia, 24(2), 329. https://doi.org/10.5944/ried.24.2.30006

Martin, F., & Bolliger, D. U. (2018). Engagement matters: Student perceptions on the importance of engagement strategies in the online learning environment. Online Learning Journal, 22(1), 205–222. https://doi.org/10.24059/olj.v22i1.1092

Moed, H. F. (2009). Measuring contextual citation impact of scientific journals. ArXiv, 4(3). https://doi.org/10.48550/arXiv.0911.2632

Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. El Profesional de La Información, 29(1), 1–20. https://doi.org/10.3145/epi.2020.ene.03

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71

Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers and Education, 147. https://doi.org/10.1016/j.compedu.2019.103778

Santos, C., Pedro, N., & Mattar, J. (2024). Metadata of the Top 40 Journals in Distance Education: A Bibliometric Analysis of Impact 2018-2022 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11196054

Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers' adoption of digital technology in education. Computers and Education, 128, 13–35. https://doi.org/10.1016/j.compedu.2018.09.009

Schmidt, F. (2008). Meta-analysis: A constantly evolving research integration tool. Organizational Research Methods, 11(1), 96–113. https://doi.org/10.1177/1094428107303161

Sherwood, G., Jones, C. B., Conklin, J. L., & Dodd, A. (2023). Quality and safety education for nurses: A bibliometric analysis. Journal of Nursing Scholarship, July 2022, 1–12. https://doi.org/10.1111/jnu.12876

Small, H. G. (1977). A Co-Citation Model of a Scientific Specialty: A Longitudinal Study of Collagen Research. Social Studies of Science, 7(2), 139–166. https://doi.org/10.1177/030631277700700202

Sternitzke, C., & Bergmann, I. (2009). Similarity measures for document mapping: A comparative study on the level of an individual scientist. Scientometrics, 78(1), 113–130. https://doi.org/10.1007/s11192-007-1961-z

Waltman, L., van Eck, N. J., van Leeuwen, T. N., & Visser, M. S. (2012). Some modifications to the SNIP journal impact indicator. Journal of Informetrics, 7(2), 272–285. https://doi.org/10.1016/j.joi.2012.11.011

Wu, Y. C. J., & Wu, T. (2017). A decade of entrepreneurship education in the Asia Pacific for future directions in theory and practice. Management Decision, 55(7), 1333–1350. https://doi.org/10.1108/MD-05-2017-0518

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1). https://doi.org/10.1186/s41239-019-0171-0

Zupic, I., & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629

Publicado
30-07-2024
Cómo citar
Santos, C., Pedro, N., & Mattar, J. (2024). Panorama actual de la investigación en educación a distancia: un estudio bibliométrico. Revista de Educación a Distancia (RED), 24(80). https://doi.org/10.6018/red.610861
Número
Sección
Artículos