Strategies for teaching computational thinking and effective use of technologies in childhood education: an inclusive proposal
Abstract
In recent years, there has been an impulse to introduce the teaching of programming and computational thinking in education, and robotics is an excellent tool to achieve this. However, the integration of these fundamental skills into formal and official curricula remains a challenge and educators need pedagogical perspectives to properly integrate the concepts of robotics, programming and computational thinking in their classrooms. Therefore, this article presents a methodological proposal based on the principles of the framework of Positive Technological Development (PTD), the Maker movement, constructivism, inclusive education and playful learning, specially designed for early childhood education. This proposal has been validated in different contexts showing its effectiveness.
Downloads
References
Ananiadou, K. y Claro, M. (2010). Habilidades y competencias del siglo XXI para los aprendices del nuevo milenio en los países de la OCDE. Organización para la Cooperación y el Desarrollo Económico. Recuperado de: shorturl.at/cnrDP.
Bers, M. U. (2008). Blocks, robots and computers: Learning about technology in early childhood. Teacher’s College Press, NY.
Bers, M. U., González-González, C., y Armas–Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130-145. doi: https://doi.org/10.1016/j.compedu.2019.04.013
Bers, M.U. (2010). Beyond computer literacy: Supporting youth’s positive development through technology. New Directions for Youth Development, 128, 13-23. doi: https://doi.org/10.1002/yd.371
Bers, M.U. (2017). The Seymour test: Powerful ideas in early childhood education, International Journal of Child-Computer Interaction, 14,10-14. doi: http://dx.doi.org/10.1016/j.ijcci.2017.06.004.
Bers, M. U. (2018). Coding as a playground: Programming and computational thinking in the early childhood classroom. Routledge.
Blikstein, P. (2018). Maker Movement in Education: History and Prospects. Handbook of Technology Education, 419-437. doi: https://doi.org/10.1007/978-3-319-44687-5_33
Burlson, W., Harlow, D. B., Nilsen, K. J., Perlin, K., Freed, N., Jensen, C., Lahey, B., Lu, P., y Muldner, K. (2017). Active Learning Environments with Robotic Tangibles: Children’s Physical and Virtual Spatial Programming Experiences. IEEE Transactions on Learning Technologies. doi: https://doi.org/10.1109/TLT.2017.2724031
Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., y Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162-175. doi: https://doi.org/10.1016/j.compedu.2017.03.001
Ching, Y. H., Hsu, Y. C., y Baldwin, S. (2018). Developing Computational Thinking with Educational Technologies for Young Learners. TechTrends, 62, 563–573. doi: https://doi.org/10.1007/s11528-018-0292-7
Chu, S. L., Quek, F., Bhangaonkar, S., Ging, A. B., y Sridharamurthy, K. (2015). Making the Maker: A Means-to-an-Ends approach to nurturing the Maker mindset in elementary-aged children. International Journal of Child-Computer Interaction, 5,11-19. doi: https://doi.org/10.1016/j.ijcci.2015.08.002
Cunha, F., y Heckman, J. (2007). The technology of skill formation. American Economic Review, 97(2), 31–47.doi: https://doi.org/10.3386/w12840.
Consejería de Educación y Universidades (2008). Decreto 183/2008, de 29 de julio, por el que se establece la ordenación y el currículo del 2º ciclo de la Educación Infantil en la Comunidad Autónoma de Canarias. Recuperado de: shorturl.at/bkmDY
Di Lieto, M. C., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., Dell’Omo, M., Laschi, C., Pecini, C., Santerini, G., Sgandurra, G. y Dario, P. (2017). Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Computers in human behavior, 71, 16-23. doi: https://doi.org/10.1016/j.chb.2017.01.018
García-Peñalvo, F. J., y Mendes, A. J. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407-411. doi: https://doi.org/10.1016/j.chb.2017.12.005.
González-González, C. S., y Arias, L. G. A. (2019). Maker movement in education: maker mindset and makerspaces. En Libro “Ingeniería colaborativa, aplicaciones y usos desde la perspectiva de la Interacción Humano-Computador”. Jurado, J.L., Collazos, C.A. y Muñoz, L. F. (Eds.). Editorial: Universidad San Buenaventura de Cali. Colombia. (p. 297-307).
González-González, C. S., Cáceres-García, L., y Violant-Holz, V. (2019). Bringing Computational Thinking to Hospital Classrooms. In Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality (31-35). ACM. doi: https://doi.org/10.1145/3362789.3362908.
González-González, C. S., Herrera-González, E., Moreno-Ruiz, L., Reyes-Alonso, N., Hernández-Morales, S., Guzmán-Franco, M. D., y Infante-Moro, A. (2019). Computational Thinking and Down Syndrome: An Exploratory Study Using the KIBO Robot. Informatics, 6 (2), 25. doi: https://doi.org/10.3390/informatics6020025
Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., y Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162-175. doi: https://doi.org/10.1016/j.compedu.2017.03.001
Halverson, E. R., y Sheridan, K. (2014). The maker movement in education. Harvard educational review, 84(4), 495-504. doi: https://doi.org/10.17763/haer.84.4.34j1g68140382063
Hamir, S., Maion, S., Tice, S., y Wideman, A. (2015). ETEC 512. Constructivism in Education. Recuperado de shorturl.at/emuwG
Hira, A., Hira, J., y Hynes, M. M. (2014). Classroom makerspaces: Identifying the opportunities and challenges. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings (1-5). IEEE. doi: 10.1109/FIE.2014.7044263
Honey, M., y Kanter, D. E. (2013). Design, make, play: Growing the next generation of STEM innovators. Routledge.
Naciones Unidas (2015). Declaración Mundial de los Derechos Humanos. Recuperado de: shorturl.at/lmxNO.
Jung, S., y Won, E. (2018). Systematic Review of Research Trends in Robotics Education for Young Children. Sustainability, 10(4), 905.doi: https://doi.org/10.3390/su10040905
Kandlhofer, M., y Steinbauer, G. (2016). Evaluating the impact of educational robotics on pupils’ technical-and social-skills and science related attitudes. Robotics and Autonomous Systems, 75, 679-685. doi: https://doi.org/10.1016/j.robot.2015.09.007
Kurti, R., Kurti, D., y Fleming, L. (2014). Practical implementation of an educational makerspace. Teacher Librarian, 42(2), 20. Recuperado de: shorturl.at/cdpuF
Madill, H. M., Campbell, R. G., Cullen, D. M., Armour, M. A., Einsiedel, A. A., Ciccocioppo, A. L., y Rothwell, C. J. (2007). Developing career commitment in STEM-related fields: myth versus reality. Women and Minorities in Science, Technology, Engineering and Mathematics, 210. doi: https://doi.org/10.4337/9781847206879
Manches, A., y Plowman, L. (2015). Computing education in children’s early years: A call for debate. British Journal of Educational Technology, 48(1), 191-201. doi: https://doi.org/10.1111/bjet.12355.
Metz, S. S. (2007). Attracting the engineers of 2020 today. Women and minorities in science, technology, engineering, and mathematics: Upping the numbers, 184-209.
Öztürk, H. T., y Calingasan, L. (2018). Robotics in Early Childhood Education: A Case Study for the Best Practices. In H. Ozcinar, G. Wong, y H. Ozturk (Eds.). Teaching Computational Thinking in Primary Education (182-200). Hershey, IGI Global. doi: https://doi.org/10.4018/978-1-5225-3200-2.ch010.
Papert, S. (1993). The children's machine: Rethinking school in the age of the computer. BasicBooks, 10 East 53rd St., New York, NY 10022-5299.
Preddy, L. (2013). Creating school library “makerspace”. School Library Monthly, 29(5), 41-42. Recuperado de: shorturl.at/bnQT7
Resnick, M. y Robinson, K. (2017). Lifelong kindergarten: Cultivating creativity through projects, passion, peers, and play. MIT press.
Román-González, M., Moreno-León, J., y Robles, G. (2019). Combining Assessment Tools for a Comprehensive Evaluation of Computational Thinking Interventions. In Computational Thinking Education (79-98). Springer, Singapore. doi: https://doi.org/10.1007/978-981-13-6528-7_6
Sarrionandía, G. E. y Ainscow, M. (2011). La educación inclusiva como derecho. Marco de referencia y pautas de acción para el desarrollo de una revolución pendiente. Tejuelo: didáctica de la lengua y la literatura. Educación, 12, 26-46. Recuperado de: shorturl.at/adoQT
Serholt, S. (2018). Breakdowns in children's interactions with a robotic tutor: A longitudinal study. Computers in Human Behavior, 81, 250-264. doi: https://doi.org/10.1016/j.chb.2017.12.030
Siu-Cheung, K. (2019). Components and Methods of Evaluating Computational Thinking for Fostering Creative Problem-Solvers in Senior Primary School Education. Computational thinking Education. NY: Springer Berlin Heidelberg, 2019. doi:https://doi.org/10.1007/978-981-13-6528-7_8
Steele, C. M. (1998). Stereotyping and its threat are real. American Psychologist, 53, 680-681.
Thompson, G. (2014). The maker movement connects to the classroom. The Education Digest, 80(3), 34. Recuperado de: shorturl.at/bitKQ
UNESCO (2008). Educación Inclusiva. Recuperado de: shorturl.at/gmFX8
UNICEF (2018). Learning through play: Strengthening learning through play in early childhood education programmes. New York: UNICEF. Recuperado de: shorturl.at/fhjmU
Zosh, J. N., Hopkins, E. J., Jensen, H., Liu, C., Neale, D., Hirsh-Pasek, K., Solis, S., y Whitebread, D. (2017). Learning through play: a review of the evidence. LEGO Fonden. Recuperado de: shorturl.at/jlCT8
Those authors who have publications with this journal accept the following terms:
a. The authors will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the Creative Commons License. Non-commercial attribution 4.0 International that allows to share, copy, and redistribute the material in any medium or format and adapt, remix, transform and build on the material in the following terms:
Recognition - You must give the appropriate credit, provide a link to the license, and indicate if changes have been made. You may do so in any reasonable manner, but not in a way that suggests that the licensor or its use endorses it. Non-commercial - You cannot use the material for commercial purposes. Share under it - If you remix, transform, or create on the material, your contributions must be distributed under the same license as the original.
b. Authors may adopt other non-exclusive licensing agreements for the distribution of the published work (e.g. deposit it in an institutional telematic file or publish it in a monographic volume) whenever the initial publication in this journal is indicated.
c. Authors are allowed and encouraged to distribute their work through the Internet (e.g. in institutional telematic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).
d. In any case, the Editorial Team understands that the opinions expressed by the authors are their exclusive responsibility.