ChatGPT

The Dilemma of the Authorship of Graded Assignments in Higher-Education

Authors

DOI: https://doi.org/10.6018/rie.565391
Keywords: ChatGPT, Natural Language Processing, Written Communication, University Education

Abstract

The emergence of ChatGPT poses new challenges in the educational field. Among them, the open discussion on the potentially negative consequences that the program's use may generate in the learning and evaluation processes of students. The present study investigates the level of knowledge and perception of ChatGPT among university educators, as well as their proficiency in discerning student-authored texts from those generated by artificial intelligence. For this purpose, 51 professors at the University of Barcelona, specializing in communication and philology, were presented with a sample of texts extracted from an authentic academic assignment that included versions written by students themselves, together with outputs generated ad hoc by ChatGPT. The accuracy rate of the authorship assignment performed by teachers was 31%, a value that reveals a new obstacle in teaching, learning, and evaluation processes in higher education. Additionally, there was a tendency for ChatGPT-generated texts to be rated more favorably than those written by the students themselves. Finally, the article presents several suggestions aimed at anticipating the potential impact of the unethical use of artificial intelligence on the development of skills and abilities among university students. 

Downloads

Download data is not yet available.

References

Agud, J. L. (2014). Fraude y plagio en la carrera y en la profesión. Revista Clínica Española, 214(7), 410–414. https://doi.org/10.1016/J.RCE.2014.03.007

Anderson, N., Belavy, D. L., Perle, S. M., Hendricks, S., Hespanhol, L., Verhagen, E., y Memon, A. R. (2023). AI did not write this manuscript, or did it? Can we trick the AI text detector into generated texts? The potential future of ChatGPT and AI in Sports & Exercise Medicine manuscript generation. BMJ Open Sp Ex Med, 9, 1568. https://doi.org/10.1136/bmjsem-2023-001568

Baidoo-Anu, D., y Owusu, L. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. SSRN. https://doi.org/10.2139/SSRN.4337484

Bharadiya, J. (2023). A Comprehensive Survey of Deep Learning Techniques Natural Language Processing. European Journal of Technology, 7(1), 58-66. https://doi.org/10.47672/ejt.1473

Bommarito, M. J., y Katz, D. M. (2022). GPT takes the Bar Exam. SSRN. http://dx.doi.org/10.2139/ssrn.4314839

Bujang, M. A., Omar, E. D., y Baharum, N. A. (2018). A Review on Sample Size Determination for Cronbach’s Alpha Test: A Simple Guide for Researchers. The Malaysian Journal of Medical Sciences : MJMS, 25(6), 85. https://doi.org/10.21315/MJMS2018.25.6.9

Butnaru, G. I., Haller, A. P., Dragolea, L. L., Anichiti, A., y Hârșan, G. D. T. (2021). Students’ Wellbeing during Transition from Onsite to Online Education: Are There Risks Arising from Social Isolation? International Journal of Environmental Research and Public Health, 18(18). https://doi.org/10.3390/IJERPH18189665

Carrasco, J. P., García, E., Sánchez, D. A., Porter, E., De La Puente, L., Navarro, J., y Cerame, A. (2023). ¿Es capaz “ChatGPT” de aprobar el examen MIR de 2022? Implicaciones de la inteligencia artificial en la educación médica en España. Revista Española de Educación Médica, 4(1). https://doi.org/10.6018/edumed.556511

Cervera, M. G., Martínez, J. G., y Mon, F. M. E. (2016). Competencia digital y competencia digital docente: una panorámica sobre el estado de la cuestión. RiiTE Revista Interuniversitaria de Investigación En Tecnología Educativa, 2529–9638. https://doi.org/10.6018/RIITE2016/257631

Chiche, A., y Yitagesu, B. (2022). Part of speech tagging: a systematic review of deep learning and machine learning approaches. Journal of Big Data, 9(1), 1-25. https://doi.org/10.1186/s40537-022-00561-y

Choi, J. H., Hickman, K. E., Monahan, A. B., y Schwarcz, D. (2023). ChatGPT goes to Law School. SSRN. https://dx.doi.org/10.2139/ssrn.4335905

Cuartero, M. D., Gutiérrez, I., Paz, M., Espinosa, P., y Clave, P. (2016). Análisis Conceptual de Modelos de Competencia Digital del Profesorado Universitario / Conceptual analysis of digital competence models of university teacher. Revista Latinoamericana de Tecnología Educativa - RELATEC, 15(1), 97–114. https://doi.org/10.17398/1695-288X.15.1.97

Díez-Martínez, E. (2015). Deshonestidad académica de alumnos y profesores. Su contribución en la desvinculación moral y corrupción social. Sinéctica, 44, 14. https://dialnet.unirioja.es/servlet/articulo?codigo=8239864&info=resumen&idioma=ENG

Domingo-Coscollola, M., Bosco, A., Segovia, S. C., y Valero, J. A. S. (2020). Fomentando la competencia digital docente en la universidad: Percepción de estudiantes y docentes. Revista de Investigación Educativa, 38(1), 167–182. https://doi.org/10.6018/RIE.340551

Doshi, R. H., Bajaj, S. S., y Krumholz, H. M. (2023). ChatGPT: Temptations of Progress. The American Journal of Bioethics. https://doi.org/10.1080/15265161.2023.2180110

Dowling, M., y Lucey, B. (2023). ChatGPT for (Finance) research: The Bananarama Conjecture. Finance Research Letters, 53, 103662. https://doi.org/10.1016/J.FRL.2023.103662

Else, H. (2023). Abstracts written by ChatGPT fool scientists. Nature, 613(7944), 423. https://doi.org/10.1038/D41586-023-00056-7

Escoda, A. P., y Conde, M. J. R. (2016). Evaluación de las competencias digitales autopercibidas del profesorado de Educación Primaria en Castilla y León (España). Revista de Investigación Educativa, 34(2), 399–415. https://doi.org/10.6018/RIE.34.2.215121

Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E. C., Ramesh, S., Luo, Y., y Pearson, A. T. (2022). Comparing scientific abstracts generated by ChatGPT to original abstracts using an artificial intelligence output detector, plagiarism detector, and blinded human reviewers. BioRxiv, 2022.12.23.521610. https://doi.org/10.1101/2022.12.23.521610

García-Peñalvo, F. J. (2023). La percepción de la Inteligencia Artificial en contextos educativos tras el lanzamiento de ChatGPT: disrupción o pánico. Education in the Knowledge Society (EKS), 24, e31279. https://doi.org/10.14201/EKS.31279

Gómez, C., y Alende, S. (2022). Rutinas y tareas del profesorado universitario durante la covid-19, Estudio de caso de la facultad de ciencias sociales y comunicación de la Universidad de Vigo. Investigación: Cultura, Ciencia y Tecnología, 27, 36–48. https://dialnet.unirioja.es/servlet/articulo?codigo=8626674&info=resumen&idioma=SPA

Hall, R., Atkins, L., y Fraser, J. (2014). Defining a self-evaluation digital literacy framework for secondary educators: the DigiLit Leicester project. Research in Learning Technology, 22. https://doi.org/10.3402/RLT.V22.21440

Haque, M., Dharmadasa, I., Tasnim Sworna, Z., Namal Rajapakse, R., y Ahmad, H. (2022). “I think this is the most disruptive technology” Exploring Sentiments of ChatGPT Early Adopters using Twitter Data. Arxiv. https://doi.org/10.48550/arXiv.2212.05856

Heller, B., Heller, B., Proctor, M., Mah, D., Jewell, L., y Cheung, B. (2005). Freudbot: An Investigation of Chatbot Technology in Distance Education. EdMedia + Innovate Learning, 2005(1), 3913–3918. https://www.learntechlib.org/primary/p/20691/

Khalil, M., y Er, E. (2023). Will ChatGPT get you caught? Rethinking of Plagiarism Detection. Arxiv. https://doi.org/10.48550/arXiv.2302.04335

Kung, T. H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., Madriaga, M., Aggabao, R., Diaz-Candido, G., Maningo, J., y Tseng, V. (2023). Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digital Health, 2(2), e0000198. https://doi.org/10.1371/JOURNAL.PDIG.0000198

Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y garantía de los derechos digitales. Boletín Oficial del Estado, 294, de 6 de diciembre de 2018. https://www.boe.es/buscar/act.php?id=BOE-A-2018-16673

Locke, S., Bashall, A., Al-Adely, S., Moore, J., Wilson, A., y Kitchen, G. B. (2021). Natural language processing in medicine: A review. Trends in Anaesthesia and Critical Care, 38, 4–9. https://doi.org/10.1016/J.TACC.2021.02.007

Luo, B., Lau, R. Y. K., Li, C., y Si, Y. W. (2022). A critical review of state-of-the-art chatbot designs and applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(1), 1–26. https://doi.org/10.1002/WIDM.1434

Manning, C., y Schutze, H. (1999). Foundations of Statistical Natural Language Processing. MIT Press. http://nlp.stanford.edu/fsnlp/

Pérez, J. Q., Daradoumis, T., y Puig, J. M. M. (2020). Rediscovering the use of chatbots in education: A systematic literature review. Computer Applications in Engineering Education, 28(6), 1549–1565. https://doi.org/10.1002/CAE.22326

Reglamento (UE) 2016/679 del Parlamento Europeo y del Consejo, de 27 de abril, relativo a la protección de las personas físicas en lo que respecta al tratamiento de sus datos personales y a la libre circulación de estos datos y por el que se deroga la Directiva 95/46/CE (Reglamento general de protección de datos). Diario Oficial de la Unión Europea, L119, de 4 de mayo de 2016. https://eur-lex.europa.eu/legal-content/es/ALL/?uri=CELEX%3A32016R0679

Rudolph, J., Tan, S., y Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Journal of Applied Learning and Teaching, 6(1). https://doi.org/10.37074/JALT.2023.6.1.9

Sáiz-Manzanares, M.C., Casanova, J.R., Lencastre, J.A., Almeida, L., y Martín-Antón, L.J. (2022). Satisfacción de los estudiantes con la docencia online en tiempos de COVID-19. Comunicar, 30(70). https://doi.org/10.3916/C70-2022-03

Sancho-Gil, J. M., Sánchez-Valero, J. A., y Domingo-Coscollola, M. (2017). Research-based insights on initial teacher education in Spain. European Journal of Teacher Education, 40(3), 310–325. https://doi.org/10.1080/02619768.2017.1320388

Sharp, J., y Theiler, S. (2018). A Review of Psychological Distress Among University Students: Pervasiveness, Implications and Potential Points of Intervention. International Journal for the Advancement of Counselling, 40(3), 193–212. https://doi.org/10.1007/s10447-018-9321-7

Tallyn, E., Fried, H., Gianni, R., Isard, A., y Speed, C. (2018). The ethnobot: Gathering ethnographies in the age of IoT. Conference on Human Factors in Computing Systems - Proceedings, 604, 1-13. https://doi.org/10.1145/3173574.3174178

Villegas-Ch, W., Arias-Navarrete, A., y Palacios-Pacheco, X. (2020). Proposal of an Architecture for the Integration of a Chatbot with Artificial Intelligence in a Smart Campus for the Improvement of Learning. Sustainability, 12(4), 1500. https://doi.org/10.3390/SU12041500

Zhu, Q., y Luo, J. (2022). Generative Pre-Trained Transformer for Design Concept Generation: An Exploration. Proceedings of the Design Society, 2, 1825-1834. https://doi.org/10.1017/pds.2022.185

Published
12-07-2024
How to Cite
Consuegra-Fernández, M., Sanz-Aznar, J., Burguera-Serra, J. G., & Caballero-Molina, J. J. (2024). ChatGPT: The Dilemma of the Authorship of Graded Assignments in Higher-Education. Journal of Educational Research, 42(2). https://doi.org/10.6018/rie.565391
Issue
Section
Articles