¿Qué sabemos del posicionamiento STEM del alumnado? Una revisión sistemática de la literatura

Autores/as

DOI: https://doi.org/10.6018/rie.467901
Palabras clave: identificación, educación STEM, alumnado, revisión de la literatura

Resumen

El auge de la perspectiva educativa STEM (ciencia, tecnología, ingeniería y matemáticas, por sus siglas en inglés) en la investigación e innovación educativa ha dado lugar a la publicación de numerosos estudios que analizan la evolución del posicionamiento del alumnado hacia las disciplinas y actividades STEM. El objetivo de este estudio es sintetizar las principales contribuciones de estas investigaciones en la etapa escolar obligatoria con un especial foco en el interés, la capacidad, la autoeficacia y las aspiraciones. Se ha realizado una revisión sistemática de publicaciones de los últimos 10 años (2011-2021) en las bases de datos más relevantes y siguiendo el modelo de la declaración PRISMA (Moher et al., 2009). El análisis temático de los 73 documentos incluidos constata la diversidad de aproximaciones al estudio de la identidad STEM, abordada desde un enfoque disciplinario o como identidad global. Se evidencian limitaciones relacionadas con alguno de los constructos considerados en el desarrollo de la identidad STEM que provocan desigualdades en el alumnado. Sin embargo, la influencia mutua entre los diversos constructos considerados permite profundizar en la caracterización de la identidad STEM del alumnado y orientar estrategias educativas que promuevan el desarrollo de una identidad STEM positiva.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Andersen, L., & Ward, T. J. (2014). Expectancy-value models for the STEM persistence plans of ninth-grade, high-ability students: A comparison between black, hispanic, and white students. Science Education, 98(2), 216–242. https://doi.org/10.1002/sce.21092

Archer, L., & Dewitt, J. (2015). Science Aspirations and Gender Identity: Lessons from the ASPIRES Project. En E. K. Henriksen, J. Dillon, & J. Ryder (Eds.), Understanding Student Participation and Choice in Science and Technology Education (pp. 89–102). Springer Editorial. https://doi.org/10.1007/978-94-007-7793-4

Archer, L., DeWitt, J., Osborne, J. F., Dillon, J., Willis, B., & Wong, B. (2013). “Not girly, not sexy, not glamorous”: primary school girls’ and parents’ constructions of science aspirations. Pedagogy, Culture and Society, 21(1), 171–194. https://doi.org/10.1080/14681366.2012.748676

Archer, L., Moote, J., Francis, B., DeWitt, J., & Yeomans, L. (2017). The “Exceptional” Physics Girl: A Sociological Analysis of Multimethod Data From Young Women Aged 10–16 to Explore Gendered Patterns of Post-16 Participation. American Educational Research Journal, 54(1), 88–126. https://doi.org/10.3102/0002831216678379

Bandura, A. (Ed.). (1995). Self-efficacy in changing societies (1ª Edición). Cambridge University Press.

Buontempo, J., Riegle-Crumb, C., Patrick, A., & Peng, M. (2017). Examining gender differences in engineering identity among high school engineering students. Journal of Women and Minorities in Science and Engineering, 23(3), 271–287. https://doi.org/10.1615/JWomenMinorScienEng.2017018579

Carlone, H. B., & Johnson, A. (2007). Understanding the Science Experiences of Successful Women of Color: Science Identity as an Analytic Lens. Journal of Research in Science Teaching, 44(8), 1187–1218. https://doi.org/10.1002/tea

Chapman, A., Rodriguez, F. D., Pena, C., Hinojosa, E., Morales, L., Del Bosque, V., Tijerina, Y., & Tarawneh, C. (2020). “Nothing is impossible”: characteristics of Hispanic females participating in an informal STEM setting. Cultural Studies of Science Education, 15(3), 723–737. https://doi.org/10.1007/s11422-019-09947-6

Chu, S. L., Schlegel, R. J., Quek, F., Christy, A., & Chen, K. (2017). 'I Make, Therefore I Am'. En Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI '17) (pp. 109–120), New York, USA. https://doi.org/10.1145/3025453.3025458

Couso, D., & Simarro, C. (2020). STEM Education Through the Epistemological Lens. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & L. D. English (Eds.), Handbook of Research on STEM Education (pp. 17–28). Routledge. https://doi.org/10.4324/9780429021381-3

Erete, S., Martin, C. K., & Pinkard, N. (2017). Digital Youth Divas. En Rankin, Y., & Thomas, J. (Ed.), Moving Students of Color from Consumers to Producers of Technology (pp. 152-173). IGI Global. http://doi:10.4018/978-1-5225-2005-4.ch008

Flowers, A. M., & Banda, R. M. (2019). An Investigation of Black Males in Advanced Placement Math and Science Courses and Their Perceptions of Identity Related to STEM Possibilities. Gifted Child Today, 42(3), 129–139. https://doi.org/10.1177/1076217519842213

Garcia, Y. V. (2013). A case study exploring science competence and science confidence of middle school girls from marginalized backgrounds [tesis doctoral, University of Northern Colorado]. Repositorio ProQuest. https://www.proquest.com/docview/1428371735

Garvin-Hudson, B., & Jackson, T. O. (2018). A case for culturally relevant science education in the summer for African American youth. International Journal of Qualitative Studies in Education, 31(8), 708–725. https://doi.org/10.1080/09518398.2018.1478156

Grimalt-Álvaro, C., & Couso, D. (2021). Developing STEM Identities in Students in the “Big Middle”. Connections between Identity and Socioeconomic Level. In E. Carlton Parsons, R. S. Schwartz, D. Bressler, N. Makki, & J. Plummer (Eds.), NARST 94th Annual International Conference (p. 119).

Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M.-C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal of Research in Science Teaching, 47(8), n/a-n/a. https://doi.org/10.1002/tea.20363

Hinds, B. F. (2014). A study of the experience of female African-American seventh graders in a Science, Technology, Engineering, and Math (STEM) afterschool program [tesis doctoral, Eastern Michigan University]. Repositorio institucional. http://commons.emich.edu/theses/822

Johnson, C. C., Mohr-Schroeder, M. J., Moore, T. J., & English, L. D. (Eds.). (2020). Handbook of Research on STEM Education. Routledge. https://doi.org/10.4324/9780429021381

Kang, H., Calabrese Barton, A., Tan, E., D. Simpkins, S., Rhee, H. yon, & Turner, C. (2019). How do middle school girls of color develop STEM identities?. Science Education, 103(2), 418–439. https://doi.org/10.1002/sce.21492

Kier, M. W. (2013). Examining the Effects of a STEM Career Video Intervention on the Interests and STEM Professional Identities of Rural, Minority Middle School Students [tesis doctoral, North Carolina State University]. Repositorio institucional. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf

Kim, A. Y., Sinatra, G. M., & Seyranian, V. (2018). Developing a STEM Identity Among Young Women: A Social Identity Perspective. Review of Educational Research, 88(4), 589–625. https://doi.org/10.3102/0034654318779957

Koch, M., Lundh, P., & Harris, C. J. (2019). Investigating STEM Support and Persistence Among Urban Teenage African American and Latina Girls Across Settings. Urban Education, 54(2), 243–273. https://doi.org/10.1177/0042085915618708

Koul, R., Lerdpornkulrat, T., & Poondej, C. (2017). Gender contentedness in aspirations to become engineers or medical doctors. European Journal of Engineering Education, 42(6), 1422–1438. https://doi.org/10.1080/03043797.2017.1303450

Lewis Ellison, T., Robinson, B., & Qiu, T. (2020). Examining African American Girls’ Literate Intersectional Identities Through Journal Entries and Discussions About STEM. Written Communication, 37(1), 3–40. https://doi.org/10.1177/0741088319880511

Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6(1). https://doi.org/10.1186/s40594-018-0151-2

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ (Online), 339(7716), 332–336. https://doi.org/10.1136/bmj.b2535

OECD. (2019). PISA 2018 Results (Volume II): Where All Students Can Succeed. PISA, OECD Publishing. https://doi.org/10.1787/b5fd1b8f-en

Oyserman, D., & Fryberg, S. (2006). The Possible Selves of Diverse Adolescents: Content and Function Across Gender, Race, and National Origin. En C. Dunkel & J. Kerpelman (Eds.), Possible selves: Theory, research, and applications (pp. 1–23). Nova Science Publishers. http://www.novapublishers.org/catalog/product_info.php?products_id=2650

Pinkard, N., Martin, C. K., & Erete, S. (2020). Equitable approaches: opportunities for computational thinking with emphasis on creative production and connections to community. Interactive Learning Environments, 28(3), 347–361. https://doi.org/10.1080/10494820.2019.1636070

Pleasants, J. (2020). Inquiring into the Nature of STEM Problems: Implications for Pre-college Education. Science and Education, 29(4), 831–855. https://doi.org/10.1007/s11191-020-00135-5

Rahm, J., & Moore, J. C. (2016). A case study of long-term engagement and identity-in-practice: Insights into the STEM pathways of four underrepresented youths. Journal of Research in Science Teaching, 53(5), 768–801. https://doi.org/10.1002/tea.21268

Reinhold, S., Holzberger, D., & Seidel, T. (2018). Encouraging a career in science: a research review of secondary schools’ effects on students’ STEM orientation. Studies in Science Education, 54(1), 69–103. https://doi.org/10.1080/03057267.2018.1442900

Riedinger, K., & Taylor, A. (2016). “I Could See Myself as a Scientist”: The Potential of Out-of-School Time Programs to Influence Girls’ Identities in Science. Afterschool Matters, 23, 1–7.

Shapiro, J. R., & Williams, A. M. (2012). The Role of Stereotype Threats in Undermining Girls’ and Women’s Performance and Interest in STEM Fields. Sex Roles, 66(3–4), 175–183. https://doi.org/10.1007/s11199-011-0051-0

Sinclair, S., Nilsson, A., & Cederskär, E. (2019). Explaining gender-typed educational choice in adolescence: The role of social identity, self-concept, goals, grades, and interests. Journal of Vocational Behavior, 110(Noviembre 2018), 54–71. https://doi.org/10.1016/j.jvb.2018.11.007

Starr, C. R., Hunter, L., Dunkin, R., Honig, S., Palomino, R., & Leaper, C. (2020). Engaging in science practices in classrooms predicts increases in undergraduates’ STEM motivation, identity, and achievement: A short-term longitudinal study. Journal of Research in Science Teaching, 57(7), 1093–1118. https://doi.org/10.1002/tea.21623

Starr, C. R., & Leaper, C. (2019). Do adolescents’ self-concepts moderate the relationship between STEM stereotypes and motivation? Social Psychology of Education, 22(5), 1109–1129. https://doi.org/10.1007/s11218-019-09515-4

Sullivan, A., & Bers, M. U. (2019). Investigating the use of robotics to increase girls’ interest in engineering during early elementary school. International Journal of Technology and Design Education, 29(5), 1033–1051. https://doi.org/10.1007/s10798-018-9483-y

Suter, W. N. (2012). Qualitative Data, Analysis, and Design. En Introduction to Educational Research. A Critical Thinking Approach (2ª Edición, pp. 342–386). SAGE Publications. https://www.doi.org/10.4135/9781483384443

Tan, E., Calabrese Barton, A., Kang, H., & O’Neill, T. (2013). Desiring a career in STEM-related fields: How middle school girls articulate and negotiate identities-in-practice in science. Journal of Research in Science Teaching, 50(10), 1143–1179. https://doi.org/10.1002/tea.21123

Todd, B. L., & Zvoch, K. (2019). Exploring Girls’ Science Affinities Through an Informal Science Education Program. Research in Science Education, 49(6), 1647–1676. https://doi.org/10.1007/s11165-017-9670-y

Verdín, D., Godwin, A., & Ross, M. (2018). STEM roles: How students’ ontological perspectives facilitate STEM identities. Journal of Pre-College Engineering Education Research, 8(2), 31–48. https://doi.org/10.7771/2157-9288.1167

Wade-Jaimes, K., Cohen, J. D., & Calandra, B. (2019). Mapping the evolution of an after-school STEM club for African American girls using activity theory. Cultural Studies of Science Education, 14(4), 981–1010. https://doi.org/10.1007/s11422-018-9886-9

Wagstaff, I. R. (2014). Predicting 9th Graders’ Science Self-efficacy and STEM Career Intent: A Multilevel Approach [tesis doctoral, North Carolina State University]. Repositorio institucional. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf

Wang, J. (2013). Ingenuity lab: Making and engineering through design challenges at a science center. En ASEE Annual Conference and Exposition, Conference Proceedings, Atlanta, Georgia. https://doi.org/10.18260/1-2--19766

Wong, B. (2017). ‘I’m good, but not that good’: digitally-skilled young people’s identity in computing. Computer Science Education, 26(4), 299–317. https://doi.org/10.1080/08993408.2017.1292604

Young, J. L., Ero-Tolliver, I., Young, J. R., & Ford, D. Y. (2017). Maximizing Opportunities to Enroll in Advanced High School Science Courses: Examining the Scientific Dispositions of Black Girls. Journal of Urban Learning, Teaching, and Research, 13, 174–183.

Publicado
01-07-2022
Cómo citar
Grimalt-Álvaro, C., & Couso, D. (2022). ¿Qué sabemos del posicionamiento STEM del alumnado? Una revisión sistemática de la literatura. Revista de Investigación Educativa, 40(2), 531–547. https://doi.org/10.6018/rie.467901
Número
Sección
Artículos