Desafíos de la Integración de los Procedimientos Quirúrgicos Robóticos en la Educación Médica de Posgrado: Revisión del Estado del Arte.
Resumen
Introducción. La cirugía robótica está transformando progresivamente la educación médica de posgrado (GME); no obstante, su incorporación en los programas de formación continúa siendo heterogénea, con deficiencias persistentes en el acceso, la estandarización curricular, la autonomía del residente y la evaluación de competencias. Objetivo. Sintetizar y mapear los principales desafíos asociados con la integración de procedimientos quirúrgicos robóticos en la GME a través de siete dominios: acceso, currículo, apoyo institucional, experiencia del residente, evaluación, barreras y resultados. La pregunta guía fue: ¿cuáles son los desafíos de integrar procedimientos quirúrgicos robóticos en la educación médica de posgrado? Métodos. Se realizó una revisión temática narrativa de estudios revisados por pares, publicados en 2025, en idioma inglés e indexados en PubMed, Scopus y Web of Science. Se incluyeron estudios que evaluaran la integración de procedimientos robóticos en programas de residencia o beca y abordaran al menos uno de los dominios predefinidos. Se excluyeron estudios no relacionados con GME, informes técnicos sin resultados formativos, artículos de opinión, preprints, duplicados y entrenamientos no robóticos. Diez estudios cumplieron los criterios de inclusión. Los datos se extrajeron mediante un marco estandarizado y no se realizó metaanálisis. Resultados. Los programas reportaron acceso desigual a plataformas robóticas, sistemas de doble consola, simuladores y tiempo de formación protegido, lo que dio lugar a currículos fragmentados y basados en la competencia, con hitos poco definidos y apoyo institucional inconsistente. Aunque los residentes mostraron alta motivación, la exposición práctica fue variable y la autonomía en la consola limitada. Las herramientas de evaluación disponibles demostraron potencial, pero carecieron de validación robusta y alineación formal con los estándares de acreditación. La implementación se vio restringida además por los elevados costos, la escasez de docentes capacitados, preocupaciones médico-legales, limitaciones del flujo de trabajo y desigualdades estructurales. Los resultados evidenciaron mejoras en métricas de simulación y procesos, mientras que la transferencia a la competencia quirúrgica independiente y a mejores resultados clínicos fue inconsistente. Conclusiones. La integración de la cirugía robótica en la GME sigue limitada por inequidades en el acceso y una infraestructura curricular e institucional inconsistente.
Descargas
-
Resumen123
-
pdf 96
-
Material suplementario7
Citas
1. Khan S, Jevnikar B, Emara A, Delaney P, Elmenawi K, Surace P, et al. Impact of robotic total hip and knee arthroplasty on resident and fellow training in orthopedic surgery. J Robot Surg. 2025, 19(1). https://doi.org/10.1007/s11701-025-02642-5
2. Muaddi H, Dare A, Walker R, Laplante S, Roke R, Karanicolas P. Bridging the gap: assessing the integration of robotic-assisted surgery into canadian surgical training programs. Can J Surg. 2024, 67(3), E250-E251. https://doi.org/10.1503/cjs.013123
3. Alicuben E, Wightman S, Shemanski K, David E, Atay S, Kim A. Training residents in robotic thoracic surgery. J Thorac Dis. 2021, 13(10), 6169-6178. https://doi.org/10.21037/jtd-2019-rts-06
4. Clark C, Turner J, Kpodzo D, Reid K, Hobson L, Moore C, et al. Adopting robotics training into a general surgery residency curriculum: where are we now?. Curr Surg Rep. 2019, 7(2). https://doi.org/10.1007/s40137-019-0225-1
5. Smyth R, Francis N, Vasudevan S. The evolution of training in robotic colorectal surgery. J Robot Surg. 2025, 19(1). https://doi.org/10.1007/s11701-025-02670-1
6. Liss M, McDougall E. Robotic surgical simulation. Cancer J. 2013, 19(2), 124-129. https://doi.org/10.1097/ppo.0b013e3182885d79
7. Buele J, Terán-Albuja J, Gutiérrez-Martínez A. Applications and challenges of artificial intelligence in oncologic surgical education. Int J Online Biomed Eng. 2025, 21(10), 128-136. https://doi.org/10.3991/ijoe.v21i10.55925
8. Pal H. Advancements and limitations in integrating robotics into medicine: a comprehensive review. Multidiscip Rev. 2024, 7(11), 2024248. https://doi.org/10.31893/multirev.2024248
9. Rail B, Abreu A, Farah E, Scott D, Sankaranarayanan G, Zeh H, et al. Learning curve of a robotic bio-tissue intestinal anastomosis: implications for surgical training curricula. J Surg Educ. 2024, 81(12), 103296. https://doi.org/10.1016/j.jsurg.2024.09.015
10. Liu Y, Zhao X, Xu C, Yu D, Liu X. Robotic surgery: the convergence of digital innovations in head and neck surgery. J Craniomaxillofac Surg. 2025, 53(11), 2005-2011. https://doi.org/10.1016/j.jcms.2025.08.018
11. Wah J. Revolutionizing surgery: ai and robotics for precision, risk reduction, and innovation. J Robot Surg. 2025, 19(1). https://doi.org/10.1007/s11701-024-02205-0
12. Rethlefsen ML, Kirtley S, Waffenschmidt S, Ayala AP, Moher D, Page MJ, Koffel JB; PRISMA-SGroup. PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches inSystematic Reviews. Syst Rev. 2021, 10(1), 39. https://doi.org/10.1186/s13643-020-01542-z
13. Mourad Ouzzani, Hossam Hammady, Zbys Fedorowicz, Ahmed Elmagarmid. Rayyan — a web and mobile app for systematic reviews. Syst Rev. 2016, 5, 210. https://doi.org/10.1186/s13643-016-0384-4
14. Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst Rev. 2022, 18(2), e1230. https://doi.org/10.1002/cl2.1230
15. Abe N, Abe T, Hori K, Abe J, Okada K, Takahashi K, Harada S, Kon M, Furumido J, Hashimoto K, Murai S, Kikuchi H, Masumori N, Kakizaki H, Shinohara N. Current Landscape of Urological Surgical Training: A Needs Assessment Survey in Japan. Int. J. Urol. 2025, 32(7), 811-820. https://doi.org/10.1111/iju.70055
16. Aksoy ME, Izzetoglu K, Utkan NZ, Agrali A, Yoner SI, Bishop A, Shewokis PA. Comparing Behavioral and Neural Activity Changes During Laparoscopic and Robotic Surgery Trainings. J Surg Educ. 2025, 82(5), 103486. https://doi.org/10.1016/j.jsurg.2025.103486
17. Evans C, Shakir T, El-Sayed C, Harji DP, Miskovic D, Shaikh I, Khan J, Kinross J, Davies RJ; Dukes' Club and The Association of Coloproctology of Great Britain and Ireland (ACPGBI) Robotic Clinical Advisory Group. ACPGBI position statement on robotic-assisted colorectal surgical training. Colorectal Dis. 2025, 27(7), e70161. https://doi.org10.1111/codi.70161
18. Fadel MG, Walshaw J, Pecchini F, al. A pan-European survey of robotic training for gastrointestinal surgery: European Robotic Surgery Consensus (ERSC) initiative. Surg Endosc. 2025, 39, 907–921. https://doi.org/10.1007/s00464-024-11373-x
19. Harris M, Bannon A, Collins JW. Procedural robotic surgery training: a UK pan-specialty trainee Delphi consensus study. J Robotic Surg. 2025, 19, 501. https://doi.org/10.1007/s11701-025-02582-0
20. Iftekhar N, Cataldo K, Seo SJ, Allen B, Giles C, Kelecy MW, MacDavid J, Baynosa RC. Robotic Rectus Abdominis Myoperitoneal Flap for Posterior Vaginal Wall Reconstruction: Experience at a Single Institution. J Clin Med. 2025, 14(1), 292. https://doi.org/10.3390/jcm14010292
21. Kim SS, Schumacher L, Cooke DT, Servais E, Rice D, Sarkaria I, Yang S, Abbas A, Sanchetti M, Long J, Kotova S, Park BJ, D'Souza D, Shah-Jadeja M, Ajouz H, Godoy L, Bahatyrevich N, Hayanga J, Lazar J. The Society of Thoracic Surgeons Expert Consensus Statements on a Framework for a Standardized National Robotic Curriculum for Thoracic Surgery Trainees. Ann Thorac Surg. 2025, 119(4), 719-732. https://doi.org/10.1016/j.athoracsur.2024.12.003
22. Laverty RB, Chesnut CH, Karam JR, et al. Evaluating the evaluators: does C-SATS measure up?. Surg Endosc. 2025, https://doi.org/10.1007/s00464-025-12150-0
23. Neuzil K, Wallen E, Potts JR 3rd, DeWitt-Foy ME. See more, do less?-resident-reported training trends in reconstructive urology. Transl Androl Urol. 2025, 14(8), 2358-2364. https://doi.org/10.21037/tau-2025-55
24. Reddington H, Bogursky A, Ballinger Z, Widdowson K, Guart J, Walter D, et al. Robotic surgery training during general surgery residency: a national survey study. J Surg Educ. 2025, 82(11), 103702. https://doi.org/10.1016/j.jsurg.2025.103702
25. Broholm M, Rosenberg J. Surgical residents are excluded from robot-assisted surgery. Surg Laparosc Endosc Percutan Tech. 2015, 25(5), 449-450. https://doi.org/10.1097/sle.0000000000000190
26. Green C, Mahuron K, Harris H, O’Sullivan P. Integrating robotic technology into resident training: challenges and recommendations from the front lines. Acad Med. 2019, 94(10), 1532-1538. https://doi.org/10.1097/acm.0000000000002751
27. Bouvette M, Lee B, Bradley N. Robotic simulation in urology training: implementation, curricula, and barriers across u.s. residency programs. J Robot Surg. 2025, 19(1). https://doi.org/10.1007/s11701-025-02591-z
28. Thomaschewski M, Kist M, Zimmermann M, Benecke C, Kalff J, Krüger C, et al. Conception and prospective multicentric validation of a robotic surgery training curriculum (rostrac) for surgical residents: from simulation via laboratory training to integration into the operation room. J Robot Surg. 2024, 18(53). https://doi.org/10.1007/s11701-023-01813-6
29. Hague C, Merrill S. Integration of robotics in urology residency programs: an unchecked technological revolution. Curr Urol Rep. 2021, 22(9). https://doi.org/10.1007/s11934-021-01062-w
30. Makope A, Higgins R. General surgery resident robotic training curriculum: evaluation six years after implementation. Surg Endosc. 2024, 39(2), 932-941. https://doi.org/10.1007/s00464-024-11441-2
31. Moit H, Dwyer A, Sutter M, Heinzel S, Crawford D. A standardized robotic training curriculum in a general surgery program. JSLS. 2019, 23(4), e2019.00045. https://doi.org/10.4293/jsls.2019.00045
32. Smith R, Patel V, Satava R. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot Comput Assist Surg. 2013, 10(3), 379-384. https://doi.org/10.1002/rcs.1559
33. Porterfield J, Podolsky D, Ballecer C, Coker A, Kudsi O, Duffy A, et al. Structured resident training in robotic surgery: recommendations of the robotic surgery education working group. J Surg Educ. 2024, 81(1), 9-16. https://doi.org/10.1016/j.jsurg.2023.09.006
34. Shellito A, Kapadia S, Kaji A, Tom C, Dauphine C, Petrie B. Current status of robotic surgery in colorectal residency training programs. Surg Endosc. 2021, 36(1), 307-313. https://doi.org/10.1007/s00464-020-08276-y
35. Martin J, Stefanidis D, Dorin R, Goh A, Satava R, Levy J. Demonstrating the effectiveness of the fundamentals of robotic surgery (frs) curriculum on the robotix mentor virtual reality simulation platform. J Robot Surg. 2020, 15(2), 187-193. https://doi.org/10.1007/s11701-020-01085-4
36. Stewart C, Green C, Meara M, Awad M, Nelson M, Coker A, et al. Common components of general surgery robotic educational programs. J Surg Educ. 2023, 80(11), 1717-1722. https://doi.org/10.1016/j.jsurg.2023.07.013
37. Jogerst K, Coe T, Petrusa E, Neil J, Davila V, Pearson D, et al. Multidisciplinary perceptions on robotic surgical training: the robot is a stimulus for surgical education change. Surg Endosc. 2022, 37(4), 2688-2697. https://doi.org/10.1007/s00464-022-09708-7
38. Wang T, Woelfel I, Huang E, Pieper H, Meara M, Chen X. Behind the pattern: general surgery resident autonomy in robotic surgery. Heliyon. 2024, 10(11), e31691. https://doi.org/10.1016/j.heliyon.2024.e31691
39. Shaw R, Eid M, Bleicher J, Broecker J, Caesar B, Chin R, et al. Current barriers in robotic surgery training for general surgery residents. J Surg Educ. 2022, 79(3), 606-613. https://doi.org/10.1016/j.jsurg.2021.11.005
40. Zhao B, Lam J, Hollandsworth H, Lee A, Lopez N, Abbadessa B, et al. General surgery training in the era of robotic surgery: a qualitative analysis of perceptions from resident and attending surgeons. Surg Endosc. 2019, 34(4), 1712-1721. https://doi.org/10.1007/s00464-019-06954-0
41. Zwakman M, Trippenzee M, Lange J, Pierie J, Consten E. Exploring needs, prevalence and experience with robotic-assisted surgery training among residents: a mixed method study. J Robot Surg. 2025, 19(1). https://doi.org/10.1007/s11701-025-02527-7
42. Tesfai F, Nagi J, Morrison I, Boal M, Olaitan A, Chandrasekaran D, et al. Objective assessment tools in laparoscopic or robotic‐assisted gynecological surgery: a systematic review. Acta Obstet Gynecol Scand. 2024, 103(8), 1480-1497. https://doi.org/10.1111/aogs.14840
43. Boal M, Anastasiou D, Tesfai F, Ghamrawi W, Mazomenos E, Curtis N, et al. Evaluation of objective tools and artificial intelligence in robotic surgery technical skills assessment: a systematic review. Br J Surg. 2023, 111(1). https://doi.org/10.1093/bjs/znad331
44. Arcamo K, Murugappan S, Larkins K, Mohan H, Costello A, Pendlebury A, et al. Determining the metrics of competence in robotic hysterectomy: a systematic review. J Robot Surg. 2025, 19(1). https://doi.org/10.1007/s11701-025-02471-6
45. Walshaw J, Fadel M, Boal M, Yiasemidou M, Elhadi M, Pecchini F, et al. Essential components and validation of multi-specialty robotic surgical training curricula: a systematic review. Int J Surg. 2025, 111(4), 2791-2809. https://doi.org/10.1097/js9.0000000000002284
46. Berg R, Vertosick E, Sjoberg D, Eugene K, Coleman J, Donahue T, et al. Implementation and validation of an automated, longitudinal robotic surgical evaluation and feedback program at a high-volume center and impact on training. Eur Urol Open Sci. 2024, 62, 81-90. https://doi.org/10.1016/j.euros.2024.02.014
47. Łajczak P, Janiec J, Żerdziński K, Jóźwik K, Nowakowski P, Nawrat Z. M.d. meets machine: the symbiotic future of surgical learning. Eur Surg. 2024, 56, 131-142. https://doi.org/10.1007/s10353-024-00840-3
48. Mottrie A, Sarchi L, Puliatti S, Gallagher A. Standardization of training. Practical Simulation in Urology. 2022, 405-420. https://doi.org/10.1007/978-3-030-88789-6_24
49. Vanlander A, Mazzone E, Collins J, Mottrie A, Rogiers X, Poel H, et al. Orsi consensus meeting on european robotic training (ocert): results from the first multispecialty consensus meeting on training in robot-assisted surgery. Eur Urol. 2020, 78(5), 713-716. https://doi.org/10.1016/j.eururo.2020.02.003
50. Olawade D, Marinze S, Weerasinghe K, Egbon E, Onuoha J, Teke J. Robotic surgery in healthcare: current challenges, technological advances, and global implementation prospects. J Robot Surg. 2025, 19(1). https://doi.org/10.1007/s11701-025-02702-w
51. Bianchi P, Formisano G. Institutional economics in robotic colorectal surgery. Robotic Surgery. 2021, 1389-1394. https://doi.org/10.1007/978-3-030-53594-0_130
52. Perry B, Howard K, Novotny N, Iacco A, Ivascu F, Nguyen N. Identifying barriers to resident robotic console time in a general surgery residency through a targeted needs assessment. J Robot Surg. 2023, 17(6), 2783-2789. https://doi.org/10.1007/s11701-023-01711-x
53. Zhao B, Hollandsworth H, Lee A, Lam J, Lopez N, Abbadessa B, et al. Making the jump: a qualitative analysis on the transition from bedside assistant to console surgeon in robotic surgery training. J Surg Educ. 2020, 77(2), 461-471. https://doi.org/10.1016/j.jsurg.2019.09.015
54. Barriga M, Rojas A, Roggin K, Talamonti M, Hogg M. Development of a two-week dedicated robotic surgery curriculum for general surgery residents. J Surg Educ. 2022, 79(4), 861-866. https://doi.org/10.1016/j.jsurg.2022.02.015
55. Raad W, Ayub A, Huang C, Guntman L, Rehmani S, Bhora F. Robotic thoracic surgery training for residency programs. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2018, 13(6), 417-422. https://doi.org/10.1097/imi.0000000000000573
56. Imai T, Amersi F, Tillou A, Chau V, Soukiasian H, Lin M. A multi-institutional needs assessment in the development of a robotic surgery curriculum: perceptions from resident and faculty surgeons. J Surg Educ. 2023, 80(1), 93-101. https://doi.org/10.1016/j.jsurg.2022.08.002
Derechos de autor 2026 Servicio de Publicaciones de la Universidad de Murcia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia
2. Las obras se publican bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0.
![]()
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones preprint (versión antes de ser evaluada y enviada a la revista) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica.













