Evaluation of STEAM Project-Based Learning through Educational Robotics for the Development of 21st-Century Skills
Abstract
In response to the growing need to prepare university students to face the challenges of a dynamic working environment, an integrated understanding of the disciplines and the application of learning in practical situations is becoming increasingly important. It is therefore necessary to implement pedagogical strategies in universities that are oriented in this direction. Thus, this study designs and implements a pedagogical strategy of project-based learning (PBL) mediated by educational robotics in a STEAM approach in an Ecuadorian public university. The aim of the study is to evaluate how the implementation of PBL mediated by educational robotics in the STEAM framework in higher education influences the development of 21st century skills of students, such as collaboration, critical thinking, problem solving, creativity or project management. A quantitative longitudinal-descriptive methodology was applied, under a Design-Based Research (DBR) approach. The sample consisted of 104 students distributed over four academic semesters who answered a Likert scale questionnaire to assess their development of the different skills in each semester. This instrument was validated by expert judgement and pilot testing, and a statistical analysis of the results was carried out using ANOVA and Tukey HSD tests. The findings showed significant and sustained improvement in six dimensions of 21st century skills, with statistically significant differences between semesters. The dimensions with the greatest progress were collaboration, reflection and project management. The results show the effectiveness of integrating educational robotics within interdisciplinary projects to promote key competences, reinforcing the relevance of the STEAM model. The effectiveness of the approach in developing key skills in real contexts is highlighted, underlining its relevance for educational innovation.
Downloads
-
Abstract557
-
PDF (Español (España))342
References
Alvarado Orozco, J. C. (2016). Estrategias Didácticas y aprendizaje de las Ciencias Sociales. Revista Científica Estelí, 17, 65–80. https://doi.org/10.5377/FAREM.V0I17.2615
Andini, S., y Rusmini, R. (2022). Project-based learning model to promote students critical and creative thinking skills. Jurnal Pijar Mipa, 17(4), 525–532. https://doi.org/10.29303/JPM.V17I4.3717
Caprano, R. M., Capraro, M. M., y Morgan, J. R. (2013). STEM Project-Based Learning. An Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach. Sense Publishers.
Chen, Y., y Dong, Z. (2024). Students’ Psychological Analysis for Classroom Teaching Strategies of Art Songs Based on STEAM Education. Sustainability, 16(1), 323. https://doi.org/10.3390/SU16010323
De Benito, B., y Salinas, J. M. (2016). La Investigación Basada en Diseño en Tecnología Educativa. Revista Interuniversitaria de Investigación En Tecnología Educativa (RIITE), 44–59. https://doi.org/10.6018/riite/2016/260631
Dewey, J. (1995). Democracia y educación: Una introducción a la filosofía de la educación (Tercera edición). Morata.
Dewey, J. (2004). Experiencia y educación. Biblioteca Nueva.
Glushkova, T., Gurba, K., Hug, T., Morze, N., Noskova, T., y Smyrnova-Trybulska, E. (2022). New technologies in personalisation of STEM and STEAM education – international context. International Journal of Continuing Engineering Education and Life-Long Learning, 32(5), 591–615. https://doi.org/10.1504/IJCEELL.2022.125730
González Fernández, M. O. (2021). Robótica Educativa. Una perspectiva didáctica en el aula (Primera edición). Astra Ediciones.
Grant, M. M. (2011). Learning, Beliefs, and Products: Students’ Perspectives with Project-based Learning. Interdisciplinary Journal of Problem-Based Learning, 5(2), 6. https://doi.org/10.7771/1541-5015.1254
Guilford, J. P. (1950). CREATIVITY. American Psychologist, 5(9), 444–454. https://doi.org/10.1037/h0063487
Hanif, S., Fany, A., Wijaya, C., y Winarno, N. (2019). Enhancing Students’ Creativity through STEM Project-Based Learning. Journal of Science Learning, 2(2), 50–57. https://doi.org/10.17509/jsl.v2i2.13271
Herro, D., Quigley, C., Andrews, J., y Delacruz, G. (2017). Co-Measure: developing an assessment for student collaboration in STEAM activities. International Journal of STEM Education, 4(1), 1–12. https://doi.org/10.1186/s40594-017-0094-z
HQPBL. (2018). Aprendizaje Basado en Proyectos de alta calidad. https://hqpbl.org/
Hussein, B. (2021). Addressing Collaboration Challenges in Project-Based Learning: The Student’s Perspective. Education Sciences, 11(8), 434. https://doi.org/10.3390/EDUCSCI11080434
Hussin, H., Jiea, P. Y., Rosly, R. N. R., y Omar, S. R. (2019). Integrated 21st century science, technology, engineering, mathematics (STEM) education through robotics project-based learning. Humanities and Social Sciences Reviews, 7(2), 204–211. https://doi.org/10.18510/hssr.2019.7222
Juandi, D., Kusumah, Y. S., -, al, Nurhidayah, I. J., Wibowo, F. C., y Astra, I. M. (2021). Project Based Learning (PjBL) Learning Model in Science Learning: Literature Review. Journal of Physics: Conference Series, 2019(1), 012043. https://doi.org/10.1088/1742-6596/2019/1/012043
Khanlari, A. (2016). Teachers’ perceptions of the benefits and the challenges of integrating educational robots into primary/elementary curricula. European Journal of Engineering Education, 41(3), 320–330. https://doi.org/10.1080/03043797.2015.1056106
Khushk, A., Zhiying, L., Yi, X., y Zengtian, Z. (2023). Technology Innovation in STEM Education: A Review and Analysis. International Journal of Educational Research and Innovation, 19, 29–51. https://doi.org/10.46661/ijeri.7883
Kokotsaki, D., Menzies, V., y Wiggins, A. (2016). Project-based learning: A review of the literature. Improving Schools, 19(3), 267–277. https://doi.org/10.1177/1365480216659733
Lang, L. (2021). Research on Design Method of Children’s Teaching Assisted Toys Based on STEAM Education. Open Journal of Social Sciences, 9(9), 628–635. https://doi.org/10.4236/JSS.2021.99046
Li, X., y Li, Y. (2023). Individualized and Innovation-Centered General Education in a Chinese STEM University. Education Sciences, 13(8). https://doi.org/10.3390/educsci13080846
Mergendoller, J. R. (2018). Defining High Quality PBL: A Look at the Research. https://hqpbl.org/
Mohammed, H. J., y Daham, H. A. (2020). Analytic Hierarchy Process for Evaluating Flipped Classroom Learning. Computers, Materials y Continua, 66(3), 2229–2239. https://doi.org/10.32604/CMC.2021.014445
Morales, M. P. E., Mercado, F., Avilla, R., Palisoc, C., Palomar, B., Sarmiento, C., Butron, B., y Ayuste, T. O. (2021). Teacher Professional Development Program (TPDP) for Teacher Quality in STEAM Education. International Journal of Research in Education and Science, 7(1), 188–206. https://doi.org/10.46328/IJRES.1439
OECD. (2023). Building the future of education 2030. https://www.oecd.org/education/2030-project/
Ordóñez, C. L. (2006). Pensar pedagógicamente, de nuevo, desde el constructivismo. Revista Ciencias de La Salud, 4, 14–23. https://www.redalyc.org/articulo.oa?id=56209903
Piaget, J. (1970). Epistemología genética y equilibración. Editorial Fundamentos.
Reeves, T. C., Herrington, J., y Oliver, R. (2005). Design Research: A socially responsible approach to instructional technology research in higher education. Journal of Computing in Higher Education, 16(2), 96–115. https://doi.org/10.1007/BF02961476
Sanches, J. J., Ferreira, P. C. D. D., Correa De Oliveira, R., Sanches, A. E., Silva Parente, R., Oliveira Bezerra, I. F., y Brito Júnior, J. de A. (2019). Active Methodologies: From text to context - A Possible Approach. International Journal for Innovation Education and Research, 7(7), 267–280. https://doi.org/10.31686/ijier.vol7.iss7.1608
Sarathy, V. (2018). Real world problem-solving. Frontiers in Human Neuroscience, 12, 300338. https://doi.org/10.3389/fnhum.2018.00261
Sasson, I., Yehuda, I., y Malkinson, N. (2018). Fostering the skills of critical thinking and question-posing in a project-based learning environment. Thinking Skills and Creativity, 29, 203–212. https://doi.org/10.1016/J.TSC.2018.08.001
Simonton, K. L., Layne, T. E., y Irwin, C. C. (2021). Project-based learning and its potential in physical education: an instructional model inquiry. Curriculum Studies in Health and Physical Education, 12(1), 36–52. https://doi.org/10.1080/25742981.2020.1862683
Sukmawati, E., Didik, N., Imanah, N., y Rantauni, D. A. (2023). Implementation and challenges of project-based learning of STEAM in the university during the pandemic: A systematic literature review. JINoP (Jurnal Inovasi Pembelajaran), 9(1), 128–139. https://doi.org/10.22219/JINOP.V9I1.25177
Toala Zambrano, D. J., Loor Mendoza, C. E., y Pozo Camacho, M. J. (2018). Estrategias pedagógicas en el desarrollo cognitivo. En M. R. Tolozano Benítez y R. Arteaga Serrano (coord.), Memorias del cuarto Congreso Internacional de Ciencias Pedagógicas de Ecuador (pp. 691-700). https://dialnet.unirioja.es/descarga/libro/743196.pdf
Torres, G., y José, M. (2021). Competencias profesionales adquiridas en opinión de una muestra de estudiantes universitarios mediante el método de Aprendizaje Orientado a Proyectos (AOP). Trabajo, Persona, Derecho, Mercado. Revista de Estudios Sobre Ciencias Del Trabajo y Protección Social, 4, 33–64. https://doi.org/10.12795/TPDM.2021.I4.04
Vilhete, J., D’abreu, V., Orlando, K., y Condori, V. (2017). Educación y Robótica Educativa. Tecnologías En Educación. RED. Revista de Educación a Distancia, 54. https://doi.org/10.6018/red/54/11
Villán-Vallejo, A., Zitouni, A., García-Llamas, P., Fernández-Raga, M., Suárez-Corona, A., y Baelo, R. (2022). Soft Skills and STEM Education: Vision of the European University EURECA-PRO. BHM Berg- Und Hüttenmännische Monatshefte, 167(10), 485–488. https://doi.org/10.1007/s00501-022-01275-7
Vygotsky, L. S. (2009). El desarrollo de los procesos psicológicos superiores. Editorial Crítica.
Walton, H. (2022). Pensamiento Crítico. PublishDrive.
Copyright (c) 2025 Fanny Soraya Zuñiga Tinizaray, Victoria I. Marín Juarros

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal accept the following terms:
a. The authors will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the Creative Commons License. Non-commercial attribution 4.0 International that allows to share, copy, and redistribute the material in any medium or format and adapt, remix, transform and build on the material in the following terms:
Recognition - You must give the appropriate credit, provide a link to the license, and indicate if changes have been made. You may do so in any reasonable manner, but not in a way that suggests that the licensor or its use endorses it. Non-commercial - You cannot use the material for commercial purposes. Share under it - If you remix, transform, or create on the material, your contributions must be distributed under the same license as the original.
b. Authors may adopt other non-exclusive licensing agreements for the distribution of the published work (e.g. deposit it in an institutional telematic file or publish it in a monographic volume) whenever the initial publication in this journal is indicated.
c. Authors are allowed and encouraged to distribute their work through the Internet (e.g. in institutional telematic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).
d. In any case, the Editorial Team understands that the opinions expressed by the authors are their exclusive responsibility.
