Cognitive scaffolding: a chatbot in social networks to analyze fake news
Supporting Agencies
- Investigación realizada gracias al apoyo del Proyecto UNAM-PAPIIT <IA302121> con título “Creencias Epistemológicas Específicas a Internet y su relación con la discriminación de noticias falsas en redes sociales” y del Proyecto UNAM-PAPIIT < TA300123> “Andamios cognitivos: Aplicaciones contra la desinformación y las noticias falsas”.
Abstract
The phenomenon of fake news shared on social networks has gone viral quickly largerly due to the way the brain processes information, emotional factors and the structure of the news itself. The objective of this study was to design and implement a chatbot used as a cognitive scaffolding for the analysis of news in social networks. The procedure was carried out in four stages: analysis of platforms to create chatbots, information search, chatbot design and implementation. It was a mixed-concurrent study with descriptive scope and non-probabilistic convenience, sampling with 29 Mexican adult participants belonging to different regions of the country. The results show that the Chatbot functioned as a cognitive scaffolding since the analysis sequence for the news item included the analysis of one's own emotions and perceptions in addition to analyzing the structure of the news. Fake news was found to elicit negative feelings in people, including emotions. While responses with "I don't believe it" type denials were frequently found to argue that the analyzed news content does not have reliable sources or sufficient foundation to be credible. It is concluded that the Chatbot had a wide acceptance by users but it can still be improved from this first experience.
Downloads
References
Allcott, H. y Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211–236. http://doi.org/10.1257/jep.31.2.211
Almalki, M. y Azeez, F. (2020). Health Chatbots for Fighting COVID-19: a Scoping Review. Acta informatica medica : AIM : journal of the Society for Medical Informatics of Bosnia y Herzegovina : casopis Drustva za medicinsku informatiku BiH, 28(4), 241–247. https://doi.org/10.5455/aim.2020.28.241-247
Álvarez D., Pico V. y Holgado T. (2021). Detección de Noticias Falsas en Redes Sociales Basada en Aprendizaje Automático y Profundo: Una Breve Revisión Sistemática. Revista Ibérica de Sistemas e Tecnologías de Informação,(E41), 632-645. https://bit.ly/3BnXr2Q
Batra, H., Palawat, G., Gupta, K., Priadarshana, Supragya, Bajaj, D. y Bharti, U. (2022). CovFakeBot: a machine learning based chatbot using ensemble learning technique for COVID-19 fake news detection. International Journal of Artificial Intelligence and Soft Computing, 7(3), 228-241. https://doi.org/10.1504/IJAISC.2022.126344
Blasco, R. y de Francisco, C. (2019). Susceptibilidad cognitiva a las falsas informaciones. Historia y comunicación social, 24(2), 521. https://bit.ly/3BlxKQH
Carcaño, B. (2021). Bots por la democracia: el porqué de la alfabetización informacional. Revista Vinculando. https://bit.ly/3Mo3qed
Castillo-Riquelme, V., Hermosilla-Urrea, P., Poblete-Tiznado, J. P. y Durán-Anabalón, C. (2021). Noticias falsas y creencias infundadas en la era de la posverdad. Universitas, Revista de Ciencias Sociales y Humanas, (34), 87-108. https://bit.ly/41AU4QG
De Barcelos, T., Muniz, L., Dantas, D., Cotrim, D., Cavalcante, J. y Faerstein, E. (2021). Análise de fake news veiculadas durante a pandemia de COVID-19 no Brasil. Revista Panamericana de Salud Pública, 45, e65. https://bit.ly/41tiFqR
Di Domenico, G., Sit, J., Ishizaka, A. y Nunan, D. (2021). Fake news, social media and marketing: A systematic review. Journal of Business Research, 124, 329-341. https://doi.org/10.1016/j.jbusres.2020.11.037
Elizalde, R. y Rodríguez, C. (2021). Nativos digitales y desinformación: un acercamiento desde el sur de Ecuador. Revista Tecnológica - ESPOL, 33(2), 94–108. https://doi.org/10.37815/rte.v33n2.834
Flores, V., Botelho, F. y Vargas M. (2019). Inteligencia Artificial: Cómo los bots pueden contrarrestar las fake news que afectan a las organizaciones de noticias. XXXI Seminario Internacional AISOC, Madrid.
González, M. (2019). Fake News: desinformación en la era de la sociedad de la información. Ámbitos. Revista Internacional de Comunicación, 45, 29-52. http://doi:10.12795/Ámbitos.2019.i45.03
Galindo, A., Ortiz, G., Martínez, B., & Gálvez, M. (2022). Chatbots como Apoyo a Tutorías Académicas en la Licenciatura en Sistemas Computacionales Administrativos de la Universidad Veracruzana Región Xalapa. Interconectando Saberes, (14), 55–64. https://doi.org/10.25009/is.v0i14.2760
Gragnani, J. (2018). Guía básica para identificar noticias falsas (antes de mandarlas a tus grupos de WhatsApp). BBC News Brasil. https://bbc.in/2MMnB3E
Gupta, A., Varun, Y., Das, P., Muttineni, N., Srivastava, P., Zafar, H., ... y Nath, S. (2021). TruthBot: An Automated Conversational Tool for Intent Learning, Curated Information Presenting, and Fake News Alerting. arXiv preprint arXiv:2102.00509. https://doi.org/10.48550/arXiv.2102.00509
Horner, C., Galletta, D., Crawford, J. y Shirsat, A. (2021). Emotions: The Unexplored Fuel of Fake News on Social Media. Journal of Management Information Systems, 38(4), 1039-1066. https://doi.org/10.1080/07421222.2021.1990610
Huertas, B. y López, O. (2014). Andamiaje metacognitivo para la búsqueda de información (AMBI): una propuesta para mejorar la consulta en línea. PAPELES, 6(11), 48-60. https://bit.ly/44VoyQt
Kaywan, P., Ahmed, K., Ibaida, A., Miao, Y., & Gu, B. (2023). Early detection of depression using a conversational AI bot: A non-clinical trial. Plos one, 18(2), e0279743. https://doi.org/10.1371/journal.pone.0279743
Lutzke, L., Drummond, C., Slovic, P. y Árvai, J. (2019). Priming critical thinking: Simple interventions limit the influence of fake news about climate change on Facebook. Global environmental change, 58. https://doi.org/10.1016/j.gloenvcha.2019.101964
MacKenzie, A. y Bhatt, I. (2020). Lies, bullshit and fake news: Some epistemological concerns. Postdigital Science and Education, 2(1), 9-13. https://doi.org/10.1007/s42438-018-0025-4
Maniou, T. y Veglis, A. (2020). Employing a chatbot for news dissemination during crisis: Design, implementation and evaluation. Future Internet, 12(7), 1-14. https://doi.org/10.3390/fi12070109
Mendiguren, T., Pérez, J. y Meso, K. (2020). Actitud ante las Fake News: Estudio del caso de los estudiantes de la Universidad del País Vasco. Revista de comunicación, 19(1), 171-184. https://bit.ly/3nURk35
Ontiveros, K. (2021). ¿Esta noticia es falsa? Edición COVID-19. International Federation of Library Associations and Institutions. https://bit.ly/41tDcLH
Pennycook, G. y Rand, D. (2018). Who falls for fake news? The roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking. Journal of Personality, 88, 185-200. https://doi.org/10.1111/jopy.12476
Peña, T., Giraldo, A., Arango, P. y Bucheli, V. (2022). Un chatbot para asistir a las necesidades de información en tiempos de COVID-19. Ingeniería y Competitividad, 24(1). https://doi.org/10.25100/iyc.v24i1.11004
Picoli, H., Oliveira, C., de Araujo, L., Manzato, M., & Rodrigues, K. (2022). Human-ChatBot Interaction: measuring the psychophysiological reactions of chatbot users. In Proceedings of the Brazilian Symposium on Multimedia and the Web (pp. 377-380). https://doi.org/10.1145/3539637.3557934
Rambe, P. (2012). Activity theory and technology mediated interaction: Cognitive scaffolding using question-based consultation on Facebook. Australasian Journal of Educational Technology, 28(8). https://doi.org/10.14742/ajet.775
Redacción Nacional Conecta. (2020, marzo). ¿Cómo distinguir noticias falsas de verdaderas en 4 pasos? Instituto Tecnológico y de Estudios Superiores de Monterrey, México. https://bit.ly/3I64LUF
Reig, D. (2015). Jóvenes de un nuevo mundo: cambios cognitivos, sociales, en valores, de la Generación conectada. Revista de estudios de juventud, (108), 21-32. https://bit.ly/2v8sCwR
Rodríguez, C. (2019). No diga fake news, di desinformación: una revisión sobre el fenómeno de las noticias falsas y sus implicaciones. Comunicación, (40), 65-74. https://bit.ly/3M0NQ78
Roque, G., Cavalcanti, A., Nascimento, J., Souza, R. y Queiroz, S. (2021). BotCovid: Development and Evaluation of a Chatbot to Combat Misinformation about COVID-19 in Brazil. En 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2506-2511). IEEE. https://doi.org/10.1109/SMC52423.2021.9658693
Sanz, B. y Cerro de Francisco, C. (2019). Susceptibilidad cognitiva a las falsas informaciones. Historia y comunicación social. 24(2), 521-531. https://doi.org/10.5209/hics.66296
Tan, J. , He, Y. , Wu, Y. , Sun, G. (2018). Dialogue matching prediction model applied in campus psychological counseling. Journal of University of Science and Technology of China, 48(9), 739. https://bit.ly/3nQzs9z
Tandoc, E., Lim, Z., & Ling, R. (2018). Defining “fake news” A typology of scholarly definitions. Digital journalism, 6(2), 137-153. https://doi.org/10.1080/21670811.2017.1360143
Thompson, N., Wang, X. y Daya, P. (2019). Determinants of news sharing behavior on social media. Journal of Computer Information Systems. https://doi.org/10.1080/08874417.2019.1566803
Valero, P. y Oliveira, L. (2018). Fake news: una revisión sistemática de la literatura (Fake news: a systematic review of the literatura). Observatorio (OBS*), 12(5), 54-78. https://bit.ly/3nXRA1b
Yun-Jo, A. (2010). Scaffolding wiki-based, ill-structured problem solving in an online environment. Journal of Online Learning and Teaching, 6(4), 723. https://bit.ly/3BsjRzS
Copyright (c) 2023 José Manuel Meza-Cano, Myriam Juanita Jiménez-Castellanos, Yunuen Ixchel Guzmán-Cedillo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal accept the following terms:
a. The authors will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the Creative Commons License. Non-commercial attribution 4.0 International that allows to share, copy, and redistribute the material in any medium or format and adapt, remix, transform and build on the material in the following terms:
Recognition - You must give the appropriate credit, provide a link to the license, and indicate if changes have been made. You may do so in any reasonable manner, but not in a way that suggests that the licensor or its use endorses it. Non-commercial - You cannot use the material for commercial purposes. Share under it - If you remix, transform, or create on the material, your contributions must be distributed under the same license as the original.
b. Authors may adopt other non-exclusive licensing agreements for the distribution of the published work (e.g. deposit it in an institutional telematic file or publish it in a monographic volume) whenever the initial publication in this journal is indicated.
c. Authors are allowed and encouraged to distribute their work through the Internet (e.g. in institutional telematic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).
d. In any case, the Editorial Team understands that the opinions expressed by the authors are their exclusive responsibility.