Factores cognitivos y emocionales del neuroaprendizaje según la percepción de futuros docentes de educación especial sobre su formación

Authors

  • Inmaculada García-Martínez University of Jaén https://orcid.org/0000-0003-2620-5779
  • Óscar Gavín-Chocano University of Jaén
  • Marina García-Valdecasas Prieto Universidad de Jaén
  • Lara Checa-Domene
DOI: https://doi.org/10.6018/reifop.615811
Keywords: Neuroeducation, ICT, teacher training, attention to diversity

Supporting Agencies

  • Plan Propio FEDER UGR. Impacto de las Ciencias Computacionales en la educación inclusiva. Retos y desafíos éticos para profesionalización docente y su puesta en práctica. Código: C-SEJ-349-UGR23.

Abstract

Executive and emotional functions are closely related to control over learning, the methodology used by teachers to address diversity, as well as the involvement and participation of the community in inclusive education. To this end, a non-experimental quantitative cross-sectional study was designed in which 631 students from the Primary Education Degree at the Universities of Jaen, Granada and Almeria participated with an average age of 23.02 years (±6,439). The instruments used were: Questionnaire for Teacher Assessment of Educational Inclusion (CEFI-R) and Neuroeducational Scale for Planning and Didactic Intervention (ENEPID). The objective of this research was to analyze the interaction between executive functions and emotions as enhancers of neurolearning in inclusive educational contexts to understand how they influence the perception of future special education teachers. This research presents the use of a reflective structural equation model (PLS-SEM) based on the proposed theoretical framework, from an explanatory-predictive perspective. The results of the model showed the following coefficients of determination Neurolearning [(Q2=.116); ( =.255)]; Methodology [(Q2=.073); ( =.108)]; Supports [(Q2=.056); ( =.115)]; Community participation [(Q2=.228); ( =.336)]; and Concept of diversity [(Q2=.027); (=.066)]. Through the multivariate structural equation model, a positive relationship was found between executive functions and emotions and neurolearning. However, there is a negative relationship between support and the conception of diversity. These results, although not conclusive, emphasize the importance of developing training actions based on allowing the acquisition of optimal cognitive and emotional patterns so that future teachers can successfully face their training and professional career.

Downloads

Download data is not yet available.

References

Becker, J.M., Ringle, C.M., y Sarstedt, M. (2018). Estimating Moderating Effects in PLS-SEM and PLSc-SEM: Interaction Term Generation. Journal of Applied Structural Equation Modeling, 2(2), 1-21. http://dx.doi.org/10.47263/JASEM.2(2)01

Bhargava, A. V., y Ramadas, V. (2022). Implications of neuroscience/neuroeducation in the field of education to enhance the learning outcomes of the students. Journal of Positive School Psychology, 6(6), 6502-6510.

Caine, R. N., y Caine, G. (1997). Education on the Edge of Possibility. Alexandria, VA: ASCD.

Campos, A. (2010). Neuroeducación: uniendo las neurociencias y la educación en búsqueda del desarrollo humano. La educación, Revista Digital, 143, 1-14.

Chin, W.W. (1998). Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 22(1),7-15.

Cifuentes, P. A., y Marín-Gutiérrez, A. (2024). Relación entre las Funciones Ejecutivas y el Currículo: Una revisión sistemática. Cultura Educación Sociedad, 15(1), e03434634. https://doi.org/10.17981/cultedusoc.15.1.2024.4984

Clavijo, R., López-Calle, C., Cedillo, C., Mora, C., y Ortiz, W. (2016). Actitudes docentes hacia la educación inclusiva en Cuenca. MASKANA, 7(1), 13-22. https://doi.org/10.18537/mskn.07.01.02

Collins, S. (2023). Neuroscience for learning and development: How to apply neuroscience and psychology for improved learning and training. Kogan Page Publishers.

Coumans, J. V., y Wark, S. (2024). Impact of Problem‐Based Learning Coaching and Neuroeducation in the Development of 21st Century Lifelong Learners. Mind, Brain, and Education, 18(1), 35-42. https://doi.org/10.1111/mbe.12406

Cueva, M. R. T., Guano, G. D. P. J., León, A. E. S., Gualotuña, S. T., y Sánchez, L. D. R. S. (2023). Neuroeducación en los ambientes escolares. Un despertar desde el binomio: emoción-aprendizaje. Ciencia Latina Revista Científica Multidisciplinar, 7(2), 313-328.

de Bortoli, B., y Teruya, T. K. (2017). Neurociência e educação: os percalços e possibilidades de um caminho em construção. Imagens Da Educação , 7(1), 70-77. https://doi.org/10.4025/imagenseduc.v7i1.32171

Díaz-Cabriales A. (2023). Escala neuroeducativa para la Planeación y la Intervención Didáctica (ENEPID). Test para el nivel neuroeducativo. JONED. Journal of Neuroeducation. 3(2), 93-105. https://doi.org/10.1344/joned. v3i2.40828

Ewing, D. L., Monsen, J. J., y Kielblock, S. (2018). Teachers’ attitudes towards inclusive education: a critical review of published questionnaires. Educational Psychology in Practice, 34(2), 150-165. https://doi.org/10.1080/02667363.2017.1417822

Finkelstein, S., Sharma, U., y Furlonger, B. (2021). The inclusive practices of classroom teachers: A scoping review and thematic analysis. International Journal of Inclusive Education, 25(6), 735-762.

Fornell, C., y Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312

García Carrasco, J. (2015). Neurociencia, aprendizaje y educación. En M. R. Buxarrais y M. Martínez (Eds.), Retos educativos para el siglo XXI: autonomía, responsabilidad, neurociencia y aprendizaje (pp. 119-154). Ediciones Octaedro, S.L.

García-Martínez, I., Montenegro-Rueda, M., Molina-Fernández, E., y Fernández-Batanero, J. M. (2021). Mapping teacher collaboration for school success. School Effectiveness and School Improvement, 32(4), 631-649.

Gómez-Marí, I., Pastor-Cerezuela, G., y Tárraga-Mínguez, R. (2023). Análisis del impacto de un curso formación sobre educación inclusiva en las actitudes y la autoeficacia de futuros docentes. Revista electrónica interuniversitaria de formación del profesorado, 26(3), 165-176.

González-Gil, F., Martín-Pastor, E., y Poy Castro, R. (2019). Educación inclusiva: Barreras y facilitadores para su desarrollo. Un estudio desde la percepción del profesorado. Profesorado, Revista De Currículum Y Formación Del Profesorado, 23(1), 243-263. https://doi.org/10.30827/profesorado.v23i1.9153

Hair, J.F., Sarstedt, M., Ringle, C.M., Gudergan, S.P., Castillo, J., Cepeda, G.A., y Roldán, J.L. (2021). Manual avanzado de Partial Least Squares Structural Equation Modeling (PLS-SEM). OmniaScience.

Hair, J. F., Sarstedt, M., Ringle, C. M., Gudergan, S. P., Castillo Apraiz, J., Cepeda Carrión, G. A., y Roldán, J. L. (2021). Manual avanzado de Partial Least Squares Structural Equation Modeling (PLS-SEM). OmniaScience.

Henseler, J., Ringle, C. M., y Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43, 115-135. https://doi.org/10.1007/s11747-014-0403-8

Holmqvist, M., y Lelinge, B. (2021). Teachers’ collaborative professional development for inclusive education. European Journal of Special Needs Education, 36(5), 819-833.

Kaur, A. (2023). New Science of Teaching and Learning. Notion Press.

Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling. The Guilford Press.

Lorenzo-Seva, U., y Van Ginkel, J.R. (2016). Multiple imputation of missing values in exploratory factor analysis of multidimensional scales: Estimating latent trait scores. Anales de Psicología, 32(2), 596-608. http://doi.org/10.6018/analesps.32.2.215161

Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhyā: The Indian Journal of Statistics (Series B), 36(2), 115-128.

Martínez-Ávila, M., y Fierro-Moreno, E. (2018). Aplicación de la técnica PLS-SEM en la gestión del conocimiento: un enfoque técnico práctico. RIDE. Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 8(16), 130-164. https://doi.org/10.23913/ride.v8i16.336

Mondéjar, J., Rodríguez, A., & Fierro, B. (2023). El paradigma de apoyos al aprendizaje desde la neurodidáctica: una necesidad en la formación universitaria. Entretextos, 17(33), 90-108. doi:10.5281/zenodo.8218195

Ringle, C.M., Sarstedt, M., Mitchell, R., y Gudergan, S.P. (2020). Partial least squares structural equation modeling in HRM research. The International Journal of Human Resource Management, 31(12), 1617‐1643. https://doi.org/10.1080/09585192.2017.1416655

Rodríguez, A., Mondéjar, J. J., Fierro, B. M. y Gallardo, C. P. (2024). Instrumentos para la medición de neuromitos docentes para su empleo en Cuba y España. Universidad & Sociedad, 16(1), 235-245. https://rus.ucf.edu.cu/index.php/rus/article/view/4323

Rodríguez, A. (coord.) (2024). ¿Ciencia o ficción en la neuroeducación? Estudio sobre neuromitos. Pirámide.

Rusconi, L., y Squillaci, M. (2023). Effects of a Universal Design for Learning (UDL) Training Course on the Development Teachers’ Competences: A Systematic Review. Education Sciences, 13(5), 466. https://doi.org/10.3390/educsci13050466

Santoianni, F., y Ciasullo, A. (2023). Milestones of Bioeducational Approach in Mind, Brain, and Education Research. In Integrated Education and Learning (pp. 297-318). Springer International Publishing.

Shulman, L. S. (2015). PCK: Its genesis and exodus. In Re-examining pedagogical content knowledge in science education (pp. 3-13). Routledge.

Totger, M. (2017). Neurociencias y Neuroaprendizajes: las emociones y el aprendizaje, nivelar estados emocionales y crear un aula con cerebro. Editorial Brujas.

Tuithof, H., Van Drie, J., Bronkhorst, L., Dorsman, L., y Van Tartwijk, J. (2023). Teachers’ pedagogical content knowledge of two specific historical contexts captured and compared. Educational Studies, 49(4), 686–711. https://doi.org/10.1080/03055698.2021.1877621

Villavicencio, V. C. V. (2023). Neuroeducation and emotional intelligence. Revista Científica Interdisciplinaria Investigación y Saberes, 13(2), 13-24.

Published
09-08-2024
How to Cite
García-Martínez, I., Gavín-Chocano, Óscar, García-Valdecasas Prieto, M., & Checa-Domene, L. (2024). Factores cognitivos y emocionales del neuroaprendizaje según la percepción de futuros docentes de educación especial sobre su formación. Interuniversity Electronic Journal of Teacher Formation, 27(3), 119–134. https://doi.org/10.6018/reifop.615811