Endogenous and exogenous factors for modeling and predicting the academic performance of university students

Authors

DOI: https://doi.org/10.6018/reifop.557911
Keywords: Endogenous factorsandexogenous, academic performance, artificial neural network, prediction

Abstract

The objective of this research is to design and implement an artificial neural network (RNA) model that allows predicting the academic performance of students at the Fabiola Salazar Leguía de Bagua National Intercultural University (UNIFSLB) in the Mathematics subject. This research presents a quantitative, non-experimental, projective and predictive approach; A dichotomous response questionnaire was developed to collect information on the factors that influence Academic Performance (AR). For the validation of the questionnaire, the expert judgment criteria was used, and for reliability the Kuder-Richarson test (reliability coefficient of 0.82). The study population was made up of 397 UNIFSLB students. The RNA model was designed in the MATLAB software, the model adjustment was performed taking into account the mean square error (0.27) and the weighted correlation coefficient during training, validation and testing (0.92%). The RNA model with the best prediction results is made up of three hidden layers (35-42-31 neurons in each hidden layer) and an output layer (1 neuron). It was concluded that it is possible to implement an RNA model with endogenous and exogenous factors to predict the AR of students

Downloads

Download data is not yet available.

References

Bahl, K., & Sharma, R. (2018). Predicting the Size of a Family Based upon the Demographic Status of that Family. Lecture Notes in Networks and Systems, 10, 207-218. Scopus. https://doi.org/10.1007/978-981-10-3920-1_21

Barge-Caballero, E., Barge-Caballero, G., Paniagua-Martín, M. J., Couto-Mallón, D., Pardo-Martínez, P., Sagastagoitia-Fornie, M., Barrios, V., Escobar, C., Cosín-Sales, J., Muñiz, J., Vázquez-Rodríguez, J. M., & Crespo-Leiro, M. G. (2021). Valor pronóstico de un nuevo modelo de evaluación clínica de pacientes ambulatorios con insuficiencia cardiaca. REC: CardioClinics. https://doi.org/10.1016/j.rccl.2021.06.004

Cejudo, R., Bayona, G., Goguitchaichvili, A., Cervantes, M., Bautista, F., & Mendiola, F. (2021). Neuronal network model to predict pollution by urban dust from major passageways in Bogotá, Colombia. Boletin de La Sociedad Geologica Mexicana, 73(1), 1-18. https://doi.org/10.18268/BSGM2021v73n1a031020

Çetinkaya, A., & Baykan, Ö. K. (2020a). Prediction of middle school students’ programming talent using artificial neural networks. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2020.07.005

Çetinkaya, A., & Baykan, Ö. K. (2020b). Prediction of middle school students’ programming talent using artificial neural networks. Engineering Science and Technology, an International Journal, 23(6), 1301-1307. https://doi.org/10.1016/j.jestch.2020.07.005

Cid-Sillero, S., Pascual-Sagastizabal, E., & Martinez-de-Morentin, J.-I. (2020). Influencia de la autoestima y la atención en el rendimiento académico del alumnado de la ESO y FPB. Revista de Psicodidáctica, 25(1), 59-67. https://doi.org/10.1016/j.psicod.2019.06.001

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. https://doi.org/10.1007/BF02310555

Dámaso-Flore, J., & Serpa-Barriento, A. (2022). Explanatory Model of Academic Performance Associated with Parenting Styles, Aggression and Resentment in Peruvian Adolescents. Revista Iberoamericana de Diagnostico y Evaluacion Psicologica, 1(62), 5-15. https://doi.org/10.21865/RIDEP62.1.01

de León, C. L. C. D., Limon, S. V., Gonzalez-Calleros, J. M., & Treviño, M. A. D. V. (2021). Artificial neural network for the extraction of dynamic parameters of robots from incomplete information of their movement. Revista Colombiana de Computacion, 22(2), 37-47. https://doi.org/10.29375/25392115.4298

Delgado, M. G., Del Barco, B. L., & Moncayo, M. R. (2022). Good university student practices that predict academic performance. Educacion XX1, 25(1), 171-195. https://doi.org/10.5944/eduxx1.30565

Foster, R. C. (2021). KR20 and KR21 for Some Nondichotomous Data (It’s Not Just Cronbach’s Alpha). Educational and Psychological Measurement. https://doi.org/10.1177/0013164421992535

Guney, Y. (2009). Exogenous and endogenous factors influencing students’ performance in undergraduate accounting modules. Accounting Education, 18(1), 51-73. https://doi.org/10.1080/09639280701740142

Hernández-Yépez, P. J., Contreras-Carmona, P. J., Inga-Berrospi, F., Ayala, P. B., & Valladares-Garrido, M. J. (2022). Factors associated with academic performance in medical students. Revista Cubana de Medicina Militar, 51(1). https://bit.ly/3J8UeGE

Hurtado, J. (2000). Metodología de la Investigación Holística (3era ed.). Caracas. Fundación Sypal.

Lesinski, G., Corns, S., & Dagli, C. (2016). Application of an Artificial Neural Network to Predict Graduation Success at the United States Military Academy. Procedia Computer Science, 95, 375-382. https://doi.org/10.1016/j.procs.2016.09.348

Martí, G. P., Caballero, F. S., & Sellabona, E. S. (2022). Academic achievement in middle childhood: Relationships with Emotional Intelligence and Social Skills. Revista de Educacion, 2022(395), 277-303. https://doi.org/10.4438/1988-592X-RE-2022-395-515

Martínez-Vicente, M., Suárez-Riveiro, J. M., & Valiente-Barroso, C. (2019). Estrés cotidiano infantil y factores ligados al aprendizaje escolar como predictores del rendimiento académico. Ansiedad y Estrés, 25(2), 111-117. https://doi.org/10.1016/j.anyes.2019.08.002

Matabuena, M., Madrid Padilla, O. H., & Gonzalez-Barcala, F.-J. (2020). Modelado estadístico y matemático en la epidemia del coronavirus: Algunas consideraciones para minimizar los sesgos en los resultados. Archivos de Bronconeumología, 56(9), 601-602. https://doi.org/10.1016/j.arbres.2020.04.022

McMillan, J. H., & Schumacher, S. (2005). Investigación educativa: Una introducción conceptual (5th ed.). Madrid: Pearson Educación.

Mendaña-Cuervo, C., & López-González, E. (2021). The impact of flipped classroom on the perception, motivation, and academic results of university students. Formacion Universitaria, 14(6), 97-108. https://doi.org/10.4067/S0718-50062021000600097

Palacios, D., & Berger, C. (2022). Friends’ Influence on Academic Performance Among Early Adolescents: The Role of Social Status. Psykhe, 31(1). https://doi.org/10.7764/psykhe.2019.21811

Raga, R., & Raga, J. (2019). Early prediction of student performance in blended learning courses using deep neural networks. 39-43. https://doi.org/10.1109/ISET.2019.00018

Reyes, N. S., Morales, J. B., Moya, J. G., Teran, C. E., Rodriguez, D. N., & Altamirano, G. C. (2019). Model to predict academic performance based on neural networks and learning analytics. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, E17, 258-266. https://n9.cl/m54v4

Shah, S. S., Shah, A. A., Memon, F., Kemal, A. A., & Soomro, A. (2021). Aprendizaje en línea durante la pandemia de COVID-19: Aplicación de la teoría de la autodeterminación en la ‘nueva normalidad’. Revista de Psicodidáctica, 26(2), 169-178. https://doi.org/10.1016/j.psicod.2020.12.004

Solana, J., Ibáñez, N., & Benito, B. (2017). Determinantes de la eficiencia en las fundaciones españolas. Revista de Contabilidad, 20(2), 176-194. https://doi.org/10.1016/j.rcsar.2016.12.001

Yağci, A., & Çevik, M. (2019). Prediction of academic achievements of vocational and technical high school (VTS) students in science courses through artificial neural networks (comparison of Turkey and Malaysia). Education and Information Technologies, 24(5), 2741-2761. https://doi.org/10.1007/s10639-019-09885-4

Published
03-04-2023
How to Cite
Incio Flores, F. A., & Capuñay Sanchez, D. L. (2023). Endogenous and exogenous factors for modeling and predicting the academic performance of university students. Interuniversity Electronic Journal of Teacher Formation, 26(2), 233–247. https://doi.org/10.6018/reifop.557911