T-MOOC, cognitive load and performance: analysis of an experience
Supporting Agencies
- Ministerio de Ciencia e Innovación (RTI2018-097214-B-C31)
Abstract
The study of cognitive load allows us to investigate the effectiveness of any training proposal mediated by technology. This paper presents the results of the implementation of a t-MOOC produced following the DigCompEdu Framework of the European Union. The participants are a group of students (n= 148) from the first year of the Pedagogy Degree (University of Seville) of the Educational Technology subject. To do this, the level of cognitive load invested in the interaction with the t-MOOC is analyzed using a validated scale. Secondly, the relationship between the invested cognitive load and the performance achieved in the experience carried out with the contents of two competence areas is studied. After the different analyzes applied, the study concludes that the t-MOOC produced is considered appropriate for the development of digital skills in students. In addition, although the correlations between cognitive load and academic performance were not very high, both are related. In this sense, the potential of training proposals focused on the development of digital skills and the benefits of applying cognitive load studies are discussed.
Downloads
References
Andersen, M. S., & Makransky, G. (2021). The validation and further development of a multidimensional cognitive load scale for virtual environments. Journal of Computer Assisted Learning, 37(1), 183-196. https://publons.com/publon/10.1111/jcal.12478
Andrade-Lotero, L.A. (2012). Teoría de la carga cognitiva, diseño multimedia y aprendizaje: un estado del arte. Magis. Revista Internacional de Investigación en Educación, 5(10), 75-92.
Brunke, R., Plass, J. y Leutne, D. (2003). Direct Measurement of Cognitive Load in Multimedia Learning. Educational Psychologist, 38(1), 53-61. https://doi.org/10.1207/S15326985EP3801_7
Cabero-Almenara, J., Barroso-Osuna, J., Gutiérrez-Castillo, J., & Palacios-Rodríguez, A. (2020). Validación del cuestionario de competencia digital para futuros maestros mediante ecuaciones estructurales. Bordón. Revista de Pedagogía, 72(2), 45-63. https://doi.org/10.13042/Bordon.2020.73436
Cabero‐Almenara, J., Guillén‐Gámez, F. D., Ruiz‐Palmero, J., y Palacios‐Rodríguez, A. (2022a). Teachers' digital competence to assist students with functional diversity: Identification of factors through logistic regression methods. British Journal of Educational Technology, 53(1), 41-57. https://doi.org/10.1111/bjet.13151
Cabero-Almenara, J., Romero-Tena, R., & Palacios-Rodríguez, A. (2020). Evaluation of Teacher Digital Competence Frameworks Through Expert Judgement: the Use of the Expert Competence Coefficient. Journal of New Approaches in Educational Research, 9(2), 275-293. https://doi.org/10.7821/naer.2020.7.578
Cabero-Almenara, J.; Gutiérrez-Castillo, J. J.; Guillén-Gámez, F. D.; Gaete Bravo, A. F. (2022b). Competencias digitales de estudiantes técnico-profesionales: creación de un modelo causal desde un enfoque PLS-SEM. Campus Virtuales, 11(1), 167-179. https://doi.org/10.54988/cv.2022.1.1008
Casal Otero, L., Barreira Cerqueiras, E. M., Mariño Fernández, R., y García Antelo, B. (2021). Competencia Digital Docente del profesorado de FP de Galicia. Pixel-Bit. Revista De Medios Y Educación, 61, 165-196. https://doi.org/10.12795/pixelbit.87192.
Castro-Meneses,L., Kruger, J-L., y Doherty, S. (2020). Validating theta power as an objective measure of cognitive load in educational video. Education Tech Research Dev, 68, 181–202. https://doi.org/10.1007/s11423-019-09681-4
Centre for Education Statistics and Evaluation (2017). Cognitive load theory: Research that teachers really need to understand. Centre for Education Statistics and Evaluation.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2a ed.). Erlbaum.
Díaz, E., Rubio, S., Martín, J., y Luceño, L. (2010). Estudio Psicométrico del Índice de Carga Mental NASA-TLX con una Muestra de Trabajadores Españoles. Revista de Psicología del Trabajo y de las Organizaciones, 26(3), 191-199.
Elford, D., Lancaster, S.J. & Jones, G.A. Exploring the Effect of Augmented Reality on Cognitive Load, Attitude, Spatial Ability, and Stereochemical Perception. J Sci Educ Technol 31, 322–339 (2022). https://doi.org/10.1007/s10956-022-09957-0
Feldon, D.F., Callan, G., Juth, S. y Jeong, S. (2019). Cognitive Load as Motivational Cost. Educ Psychol Rev, 31, 319–337. https://doi.org/10.1007/s10648-019-09464-6.
García-Prieto, F. J., López-Aguilar, D., & Delgado-García, M. (2022). Competencia digital del alumnado universitario y rendimiento académico en tiempos de COVID-19: [Digital competence of university students and academic performance in times of COVID-19]. Pixel-Bit. Revista De Medios Y Educación, 64, 165–199. https://doi.org/10.12795/pixelbit.91862
Hollender, N., Hofmann, C., Deneke, M., y Schmitz, B. (2010). Integrating cognitive load theory and concepts of human–computer interaction. Computers in Human Behavior, 26, 1278–1288.
Kirschner, P. A., Ayres, P., y Chandler, P. (2011). Contemporary Cognitive Load Theory Research: The Good, The Bad and The Ugly. Computers in Human Behavior, 27(1), 99-105.
Leppink, J., Paas, F., Van der Vieuten, C., Van Cog, T. y Van Merriënboer, J. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods (Online), 45, 1058–1072. https://doi.org/10.3758/s13428-013-0334-1
Leppink, J., Paas, F., van Gog, C. y van der Vleuten, J. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 32-42. https://doi.org/10.1016/j.learninstruc.2013.12.001
Lin, F. y Kao, M. (2018). Mental effort detection using EEG data in E-learning contexts. Computers & Education, 122, 63-79. https://doi.org/10.1016/j.compedu.2018.03.020.
Mayer, R. (2003). Multimedia learning. Cambridge University Press.
Naismith, L., Cheung, J., Ringsted, Ch. y Cavalcanti, R. (2015). Limitations of subjective cognitive load measures in simulation-based procedural training. Medical Education, 49, 805–814.
Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84, 429–434.
Paas, F., Tuovinen, J., Tabbers, H. y Van Gerven, P. (2003). Cognitive Load Measurement as a Means to Advance Cognitive Load Theory. Educational Psychologist, 38(1), 63-71, https://doi.org/10.1207/S15326985EP3801_8
Paz Saavedra, L., Gisbert Cervera, M., y Usart Rodríguez, M. (2022). Competencia digital docente, actitud y uso de tecnologías digitales por parte de profesores universitarios. Pixel-Bit. Revista De Medios Y Educación, 63, 93-130. https://doi.org/10.12795/pixelbit.91652
Plass, J.L., y Kalyuga, S. (2019). Four Ways of Considering Emotion in Cognitive Load Theory. Educational Psychology Review, 31, 339–359 (2019). https://doi.org/10.1007/s10648-019-09473-5.
Reid GB, Nygren TE. (1988), The subjective workload assessment technique: a scaling procedure for measuring mental workload. En: Hancock PA, Meshkati N, editores, Human mental workload. Amsterdam: Elsevier, 1988; 185-218.
Rolo, G., Díaz, D. y Hernández, E. (2009). Desarrollo de una Escala Subjetiva de Carga Mental de Trabajo (ESCAM). Revista de Psicología del Trabajo y de las Organizaciones, 25(1), 29-37.
Sepp, S., Howard, S.J., Tindall-Ford, S., Paas, F. (2019). Cognitive Load Theory and Human Movement: Towards an Integrated Model of Working Memory. Educational Psychology Review, 31, 293–317 (2019). https://doi.org/10.1007/s10648-019-09461-9.
Sweller, J. (1994). Cognitive Load Theory, Learning Difficulty, and Instructional Design. Learning and Instruction, 4(4), 295-312.
Thees M, Kapp S, Altmeyer K, Malone S, Brünken R and Kuhn J (2021) Comparing Two Subjective Rating Scales Assessing Cognitive Load During Technology-Enhanced STEM Laboratory Courses. Front. Educ. 6, 705551. https://doi.org/10.3389/feduc.2021.705551
Torres Barzabal, M. L., Martínez Gimeno, A., Jaén Martínez, A., y Hermosilla Rodríguez, J. M. (2022). La percepción del profesorado de la Universidad Pablo de Olavide sobre su Competencia Digital Docente. Pixel-Bit. Revista De Medios Y Educación, 63, 35-64. https://doi.org/10.12795/pixelbit.91943.
Los artículos que se publican en esta revista están sujetos a los siguientes términos:
1. El Departamento de Métodos de Investigación y Diagnóstico en Educación de la Universidad de Murcia (España), junto con el Servicio de Publicaciones de la Universitdad de Murcia (Editum) son los editores de la revista REIFOP y conserva los derechos patrimoniales (copyright) de los artículos publicados, permitiendo la reutilización de las mismos bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editores y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.