Perspectivas Estudiantiles y Docentes sobre la IA en la Educación Sanitaria: Scoping Review

Authors

  • Oscar Jerez Yañez Departamento de Educación en Ciencias de la Salud, Facultad de Medicina, Universidad de Chile https://orcid.org/0000-0003-0869-5938
  • Jimin Kim Escuela de Medicina, Facultad de Medicina, Universidad de Chile
  • Juan Bonilla Mejia Escuela de Medicina, Facultad de Medicina, Universidad de Chile https://orcid.org/0009-0007-4086-083X
  • Faviana Montalvo Escuela de Medicina, Facultad de Medicina, Universidad de Chile https://orcid.org/0009-0001-9975-3541
  • Micael Veas Romero Escuela de Medicina, Facultad Medicina, Universidad de Chile
DOI: https://doi.org/10.6018/edumed.633811
Keywords: Artificial Intelligence, Medical Education, Students, Teachers, Perception

Abstract

The teaching and learning process in Medical Education evolves with technological advancements. Artificial Intelligence (AI) has become an increasingly utilized tool in student learning. However, its implementation is questioned by both faculty and students in health-related fields. In this scoping review, the perceptions, opportunities, and challenges of undergraduate health students regarding AI implementation were examined. Following PRISMA guidelines, searches were conducted in MEDLINE/PubMed, Scopus, and ISI/Web of Science for relevant articles; duplicate articles were removed and selected according to our eligibility criteria. Of the 121 studies selected, 14 were included in the review; a thematic analysis was conducted based on categories from the selected studies. Most findings show good perception, interest, and willingness from students regarding the implementation of AI in the medical curriculum. However, the lack of understanding of AI’s usefulness, along with resistance to change due to fear of job replacement, stands out as a major challenge. Furthermore, the ethical challenge of the dehumanization of medicine is also raised. The main limitation is that the research topic is still developing, with the available literature still in its early stages.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Palomino Quispe JF, Choque-Flores L, Castro León AL et al. The Transformative Role of Technology in Medical Education. Salud, Ciencia y Tecnología, 2024; 4: 657. http://hdl.handle.net/10757/673723

González-Flores P, Luna De La Luz V. La transformación de la educación médica en el último siglo: innovaciones curriculares y didácticas (parte 1). Inv Ed Med. 2019; 8(30): 95-109. https://doi.org/10.22201/facmed.20075057e.2019.30.18165

Krishnan G, Singh S, Pathania M, Gosavi S, Abhishek S, Parchani A, et al. Artificial intelligence in clinical medicine: catalyzing a sustainable global healthcare paradigm. Front Artif Intell. 2023;6:1227091. https://doi.org/10.3389/frai.2023.1227091

Avila-Tomás JF, Mayer-Pujadas MA, Quesada-Varela VJ. La inteligencia artificial y sus aplicaciones en medicina I: introducción antecedentes a la IA y robótica. Atención Primaria. 2020; 52(10): 778-84. https://doi.org/10.1016/j.aprim.2020.04.013

Sauerbrei A, Kerasidou A, Lucivero F, Hallowell N. The impact of artificial intelligence on the person-centred, doctor-patient relationship: some problems and solutions. BMC Med Inform Decis Mak. 2023; 23(1): 73. https://doi.org/10.1186/s12911-023-02162-y

Banerjee M, Chiew D, Patel KT, Johns I, Chappell D, Linton N, et al. The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ. 2021; 21(1): 429. https://doi.org/10.1186/s12909-021-02870-x

Grunhut J, Marques O, Wyatt ATM. Needs, Challenges, and Applications of Artificial Intelligence in Medical Education Curriculum. JMIR Med Educ. 2022; 8(2): e35587. https://doi.org/10.2196/35587

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005; 8(1): 19-32. https://doi.org/10.1080/1364557032000119616

Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69. https://doi.org/10.1186/1748-5908-5-69

Tricco AC, Lillie E, Zarin W, O'Brien K, Colquhoun H, Kastner M, et al. A scoping review on the conduct and reporting of scoping reviews. BMC Med Res Methodol. 2016; 16:15. https://doi.org/10.1186/s12874-016-0116-4

Alkhaaldi S, Kassab C, Dimassi Z, Oyoun L, Al Fahim M, Al Hageh C, et al. Medical Student Experiences and Perceptions of ChatGPT and Artificial Intelligence: Cross-Sectional Study. JMIR Med Educ. 2023; 9: e51302. https://doi.org/10.2196/51302

Pallivathukal R, Kyaw Soe HH, Donald PM, Samson RS, Hj Ismail AR. ChatGPT for Academic Purposes: Survey Among Undergraduate Healthcare Students in Malaysia. Cureus. 2024; 16(1): e53032. https://doi.org/10.7759/cureus.53032

Truong NM, Vo TQ, Tran HTB, Nguyen HT, Pham VNH. Healthcare students’ knowledge, attitudes, and perspectives toward artificial intelligence in the southern Vietnam. Heliyon. 2023; 9(12): e22653. https://doi.org/10.1016/j.heliyon.2023.e22653

Santos JC, Wong JHD, Pallath V, Ng KH. The perceptions of medical physicists towards relevance and impact of artificial intelligence. Phys Eng Sci Med. 2021; 44(3): 833-841. https://doi.org/10.1007/s13246-021-01036-9

Jaber Amin MH, Mohamed Elhassan Elmahi MA, Abdelmonim GA, Fadlalmoula GA, Jaber Amin JH, Khalid Alrabee N, et al. Knowledge, attitude, and practice of artificial intelligence among medical students in Sudan: a cross-sectional study. Ann Med Surg. 2024; 86(7): 3917-3923. https://doi.org/10.1097/MS9.0000000000002070

Bonacaro A, Rubbi I, Artioli G, Monaco F, Sarli L, Guasconi M. AI and Big Data: Current and Future Nursing Practitioners’ Views on Future of Healthcare Education Provision. Stud Health Technol Inform. 2024; 315: 200-204. https://doi.org/10.3233/SHTI240134

Yalcinkaya T, Ergin E, Yucel SC. Exploring Nursing Students’ Attitudes and Readiness for Artificial Intelligence: A Cross-Sectional Study. Teach Learn Nurs. 2024; 19(4): e722-728. https://doi.org/10.1016/j.teln.2024.07.008.

Buabbas AJ, Miskin B, Alnaqi AA, Ayed AK, Shehab AA, Syed-Abdul S, et al. Investigating Students’ Perceptions towards Artificial Intelligence in Medical Education. Healthcare. 2023; 11(9): 1298. https://doi.org/10.3390/healthcare11091298

Allam AH, Eltewacy NK, Alabdallat YJ, Owais TA, Salman S, Ebada MA, et al. Knowledge, attitude, and perception of Arab medical students towards artificial intelligence in medicine and radiology: A multi-national cross-sectional study. Eur Radiol. 2024; 34(7): 1-14. https://doi.org/10.1007/s00330-023-10509-2.

Jebreen K, Radwan E, Kammoun-Rebai W, Alattar E, Radwan A, Safi W, et al. Perceptions of undergraduate medical students on artificial intelligence in medicine: mixed-methods survey study from Palestine. BMC Med Educ. 2024; 24(1): 507. https://doi.org/10.1186/s12909-024-05465-4

Fitzek S, Choi KEA. Shaping future practices: German-speaking medical and dental students’ perceptions of artificial intelligence in healthcare. BMC Med Educ. 2024; 24(1): 844. https://doi.org/10.1186/s12909-024-05826-z

Wood E, Ange B, Miller D. Are We Ready to Integrate Artificial Intelligence Literacy into Medical School Curriculum: Students and Faculty Survey. J Med Educ Curric Dev. 2021; 23:8. https://doi.org/10.1177/23821205211024078

Abou Hashish EA, Alnajjar H. Digital proficiency: assessing knowledge, attitudes, and skills in digital transformation, health literacy, and artificial intelligence among university nursing students. BMC Med Educ. 2024; 24(1): 508. https://doi.org/10.1186/s12909-024-05482-3

Sharma V, Pareek V, Sharma L, Saini U, Kumar S. Artificial Intelligence (AI) Integration in Medical Education: A Pan-India Cross-Sectional Observation of Acceptance and Understanding Among Students. Scripta Medica. 2023; 55: 343-52. https://doi.org/10.5937/scriptamed54-46267

Blease C, Kharko A, Bernstein M, Bradley C, Houston M, Walsh I, et al. Machine learning in medical education: a survey of the experiences and opinions of medical students in Ireland. BMJ Health Care Inform. 2022; 29(1): e100480. https://doi.org/10.1136/bmjhci-2021-100480

Sun L, Yin C, Xu Q, Zhao W. Artificial intelligence for healthcare and medical education: a systematic review. Am J Transl Res. 2023; 15(7): 4820- 4828. https://pubmed.ncbi.nlm.nih.gov/37560249/

Mousavi Baigi SF, Sarbaz M, Ghaddaripouri K, Ghaddaripouri M, Mousavi AS, Kimiafar K. Attitudes, knowledge, and skills towards artificial intelligence among healthcare students: A systematic review. Health Sci Rep. 2023; 6(3): e1138. https://doi.org/10.1002/hsr2.1138

Amiri H, Peiravi S, Rezazadeh Shojaee S, Rouhparvarzamin M, Nateghi MN, Etemadi MH, et al. Medical, dental, and nursing students’ attitudes and knowledge towards artificial intelligence: a systematic review and meta-analysis. BMC Med Educ. 2024; 24(1): 412. https://doi.org/10.1186/s12909-024-05406-1

Gordon M, Daniel M, Ajiboye A, Uraiby H, Xu NY, Bartlett R, et al. A scoping review of artificial intelligence in medical education: BEME Guide No. 84. Med Teach. 2024; 46(4): 446-70. https://doi.org/10.1080/0142159X.2024.2314198

Chen M, Zhang B, Cai Z, Seery S, Gonzalez MJ, Ali NM, et al. Acceptance of clinical artificial intelligence among physicians and medical students: A systematic review with cross-sectional survey. Front Med. 2022; 9: 990604. https://doi.org/10.3389/fmed.2022.990604

Morrow E, Zidaru T, Ross F, Mason C, Patel KD, Ream M, et al. Artificial intelligence technologies and compassion in healthcare: A systematic scoping review. Front Psychol. 2023; 13: 971044. https://doi.org/10.3389/fpsyg.2022.971044

Young A, Amara D, Bhattacharya A, Wei M. Patient and general public attitudes towards clinical artificial intelligence: a mixed methods systematic review. Lancet Digit Health. 2021; 3(9): e599-e611. https://doi.org/10.1016/S2589-7500(21)00132-1

Williamson SM, Prybutok V. Balancing privacy and progress: a review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Appl Sci. 2024; 14(2): 675. https://doi.org/10.3390/app14020675

Pickering, B. Trust, but verify: informed consent, AI technologies, and public health emergencies. Future Internet. 2021; 13(5): 132. https://doi.org/10.3390/fi13050132

Pupic N, Ghaffari-Zadeh A, Hu R, Singla R, Darras K, Karwowska A, et al. An evidence-based approach to artificial intelligence education for medical students: A systematic review. PLoS Digit Health. 2023; 2(11): e0000255. https://doi.org/10.1371/journal.pdig.0000255

Iqbal S, Ahmad S, Akkour K, Wafa ANA, AlMutairi HM, Aldhufairi AM. Impact of Artificial Intelligence in Medical Education. MedEdPublish. 2021. https://doi.org/10.15694/mep.2021.000041.1

Jussupow E, Spohrer K, Heinzl A. Identity Threats as a Reason for Resistance to Artificial Intelligence: Survey Study With Medical Students and Professionals. JMIR Form Res. 2022; 6(3): e28750. https://doi.org/10.2196/28750.

Lambert SI, Madi M, Sopka S, Lenes A, Stange H, Buszello CP, et al. An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. NPJ Digit Med. 2023; 6(1): 111. https://doi.org/10.1038/s41746-023-00852-5

Sapci A, Sapci H. Artificial Intelligence Education and Tools for Medical and Health Informatics Students: Systematic Review. JMIR Med Educ. 2020; 6(1): e19285. https://doi.org/10.2196/19285

Published
05-02-2025
How to Cite
Jerez Yañez, O., Kim, J., Bonilla Mejia, J., Montalvo, F., & Veas Romero, M. (2025). Perspectivas Estudiantiles y Docentes sobre la IA en la Educación Sanitaria: Scoping Review. Spanish Journal of Medical Education, 6(2). https://doi.org/10.6018/edumed.633811

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
85%
33%
Days to publication 
109
145

Indexed in

Editor & editorial board
profiles
Academic society 
Universidad de Murcia
Publisher 
Ediciones de la Universidad de Murcia (Editum)