Uso de la inteligencia artificial en estrategias de repetición espaciada para la educación médica y el aprendizaje significativo: revisión sistemática.
Resumen
La educación médica enfrenta el reto de gestionar grandes volúmenes de información y prevenir el aprendizaje superficial. La repetición espaciada, basada en la curva del olvido, fortalece la retención a largo plazo y favorece el aprendizaje significativo. Su integración con la inteligencia artificial (IA) permite personalizar los intervalos de repaso, automatizar la generación de materiales y ofrecer retroalimentación inmediata, ampliando el potencial pedagógico de esta estrategia. Objetivo: Evaluar la efectividad y aplicabilidad de la repetición espaciada asistida por IA en la docencia de Ciencias de la Salud. Métodos: Se realizó una revisión sistemática descriptiva conforme a PRISMA 2020. La búsqueda se llevó a cabo en Google Scholar y Web of Science (2020–2025) utilizando los términos “spaced repetition”, “medical education”, “learning” y “artificial intelligence”. Se incluyeron estudios originales, revisiones y reportes aplicados que abordaran la repetición espaciada con o sin IA. De 1870 registros iniciales, 18 estudios cumplieron los criterios de inclusión y fueron analizados cualitativamente. Resultados: La evidencia directa mostró que la IA mejora la personalización de los intervalos de repaso, la calidad de la retroalimentación y la consolidación del conocimiento. La evidencia indirecta confirmó la eficacia de la repetición espaciada tradicional, con beneficios sostenidos en rendimiento académico y memoria en exámenes estandarizados. La evidencia complementaria destacó que la IA potencia otros procesos formativos, como la tutoría automatizada, la simulación clínica y el microaprendizaje. Conclusiones: la repetición espaciada asistida por IA representa una estrategia pedagógica innovadora y coherente con la educación médica basada en competencias. Facilita la personalización del aprendizaje, fortalece la retención y promueve la autonomía estudiantil. Sin embargo, las limitaciones metodológicas de los estudios disponibles subrayan la necesidad de investigaciones longitudinales y multicéntricas que evalúen su impacto educativo y clínico, e incorporen estrategias éticas que garanticen la equidad y la verificación humana en el uso de estas tecnologías.
Descargas
Métricas
-
Resumen60
-
pdf21
-
pdf 21
Citas
Ahmed T, Stinson K, Johnson J, Latif Z. QuizTime: innovative learning platform to support just-in-time asynchronous quizzes to improve health outcomes. AMIA Annu Symp Proc, 2023, 2023, 253–260.
Arango-Ibanez JP, Posso-Nuñez JA, Díaz-Solórzano JP, Cruz-Suárez G. Evidence-based learning strategies in medicine using AI. JMIR Med Educ, 2024, 10, e54507. http://doi.org/10.2196/54507
Bachiri YA, Mouncif H, Bouikhalene B. Harnessing generative AI to boost active retrieval and retention in MOOCs with spaced repetition. Knowl Manag E-Learn, 2025, 17(3), 391–408.
Bjurström MF, Lundkvist E, Sturesson LW, Borgquist O, Lundén R, Fagerlund MJ, Lipcsey M, Kander T. Digital learning resource use among Swedish medical students: insights from a nationwide survey. BMC Med Educ, 2025, 25(1), 849. http://doi.org/10.1186/s12909-025-07446-7
Burel J, Trost O, Demeyere M, Rives N, Estour F, Ladner J, et al. Spaced repetition and other key factors influencing medical school entrance exam success: insights from a French survey. BMC Med Educ, 2025, 25(1), 1036. http://doi.org/10.1186/s12909-025-07605-w
Çiçek FE, Ülker M, Özer M, Kıyak YS. ChatGPT versus expert feedback on clinical reasoning questions and their effect on learning: a randomized controlled trial. Postgrad Med J, 2025, 101(1195), 458–463. http://doi.org/10.1093/postmj/qgae170
Cooper S, Twardowski N, Vogel M, Perling D, Ryznar R. The effect of spaced repetition learning through Anki on medical board exam performance. Int J Med Students, 2023, 11, e1549. http://doi.org/10.5195/ijms.2023.1549
Gilbert MM, Frommeyer TC, Brittain GV, Stewart NA, Turner TM, Stolfi A, Parmelee D. A cohort study assessing the impact of Anki as a spaced repetition tool on academic performance in medical school. Med Sci Educ, 2023, 33(4), 955–962. http://doi.org/10.1007/s40670-023-01826-8
Kaczmarek JI, Pokrywka J, Biedalak K, Kurzyp G, Grzybowski Ł. Optimizing retrieval-augmented generation of medical content for spaced repetition learning. arXiv, 2025, preprint 2503.01859. http://doi.org/10.48550/arXiv.2503.01859
Kaur G, Nematollahi S, Das T. Navigating digital medical education in the current era: process over platform. US Cardiol Rev, 2025, 19, e05. http://doi.org/10.15420/usc.2024.29
Kim TW. Application of artificial intelligence chatbots, including ChatGPT, in education, scholarly work, programming, and content generation and its prospects: a narrative review. J Educ Eval Health Prof, 2023, 20, 38. http://doi.org/10.3352/jeehp.2023.20.38
Martinengo L, Ng MSP, Ng TDR, Ang YI, Jabir AI, Kyaw BM, Car LT. Spaced digital education for health professionals: systematic review and meta-analysis. J Med Internet Res, 2024, 26(1), e57760. http://doi.org/10.2196/57760
Mehta A, Brooke N, Puskar A, Woodson MCC, Masi B, Wallon RC, Greeley DA. Implementation of spaced repetition by first-year medical students: a retrospective comparison based on summative exam performance. Med Sci Educ, 2023, 33(5), 1089–1094. http://doi.org/10.1007/s40670-023-01839-3
Preiksaitis C, Rose C. Opportunities, challenges, and future directions of generative artificial intelligence in medical education: scoping review. JMIR Med Educ, 2023, 9, e48785. http://doi.org/10.2196/48785
Slinger P, Omar M, Younus S, Charow R, Baxter M, Campbell C, et al. Innovative mobile app (CPD By the Minute) for continuing professional development in medicine: multimethods study. JMIR Med Educ, 2025, 11(1), e69443. http://doi.org/10.2196/69443
Sriram A, Ramachandran K, Krishnamoorthy S. Artificial intelligence in medical education: transforming learning and practice. Cureus, 2025, 17, e80852. http://doi.org/10.7759/cureus.80852
Stirrat T, Martin R, Umair M, Waller J. Advancing radiology education for medical students: leveraging digital tools and resources. Pol J Radiol, 2024, 89, e508–e516. http://doi.org/10.5114/pjr/193518
Valladares Patiño AG, Rojas Peñafiel JA. Artificial intelligence tutoring versus tutoring with experts in learning the preclinical and clinical areas of medicine. LACCEI, 2023, 1, 1504. http://doi.org/10.18687/LACCEI2023.1.1.1504
Weidener L, Fischer M. Artificial intelligence in medicine: cross-sectional study among medical students on application, education, and ethical aspects. JMIR Med Educ, 2024, 10, e51247. http://doi.org/10.2196/51247
Weidener L, Fischer M. Proposing a principle-based approach for teaching AI ethics in medical education. JMIR Med Educ, 2024, 10, e55368. http://doi.org/10.2196/55368
Wothe JK, Wanberg LJ, Hohle RD, Sakher AA, Bosacker LE, Khan F, Olson AP, Satin DJ. Academic and wellness outcomes associated with use of Anki spaced repetition software in medical school. J Med Educ Curric Dev, 2023, 10, 23821205231173289. http://doi.org/10.1177/23821205231173289
Xu Y, Jiang Z, Ting DSW, Kow AWC, Bello F, Car J, Tham YC, Wong TY. Medical education and physician training in the era of artificial intelligence. Singapore Med J, 2024, 65(3), 159–166. http://doi.org/10.4103/singaporemedj.SMJ-2023-203
Yao K, Nguyen J, Mathur M. Spaced repetition learning in radiology education: exploring its potential and practical application. J Am Coll Radiol, 2025, 22(1), 15–21. http://doi.org/10.1016/j.jacr.2024.11.020
Derechos de autor 2025 Servicio de Publicaciones de la Universidad de Murcia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia
2. Las obras se publican bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0.
![]()
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones preprint (versión antes de ser evaluada y enviada a la revista) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica.













