A Terministic Translation of Moss’ Natural Logic

Authors

DOI: https://doi.org/10.6018/daimon.466741
Keywords: Natural language reasoning, term logic, semantic trees

Supporting Agencies

  • Este proyecto fue financiado por un proyecto de UPAEP s/n.

Abstract

In this contribution we present a translation from Moss’ natural logic to Sommers’ term logic by using a tableaux method. The result shows Sommers’ term logic lies beyond the Peano-Frege, Church-Turing, and Aristotle frontiers while maintaining the inferential and expressive powers of the systems that inhabit such limits. This suggests that term logic might be instrumental for a natural logic project.

Downloads

Download data is not yet available.
Metrics
Views/Downloads
  • Abstract
    61
  • PDF (Español (España))
    31
  • HTML (Español (España))
    4

References

Carnielli, Walter A., Juan C. Agudelo (2011), “Polynomial ring calculus for modal logics: A new semantics and proof method for modalities”, The Review of Symbolic Logic, 4(1):150-170.

Carnielli, Walter A. (2005), “Polynomial ring calculus for many-valued logics”, en 35th International Symposium on Multiple-Valued Logic (ISMVL’05), 20–25.

Carnielli, Walter A. (2007), “Polynomizing: Logic inference in polynomial format and the legacy of Boole”, en Model-Based Reasoning in Science, Technology, and Medicine.

Castro-Manzano, J.M. (2018). A Tableaux Method for Term Logic. LANMR 2018, 2264, 1-14.

Castro-Manzano, J.M. (2020). Distribution Tableaux, Distribution Models. Axioms, 9(41). Castro-Manzano, J.M. (2021). Traditional Logic and Computational Thinking. Philosophies, 6(12).

Castro-Manzano, J.M y Lozano-Cobos, L.I. (2018). TFLPL: Programación con lógica de términos. Research in Computing Science, 147(6), 265-283.

Castro-Manzano, J.M. y Reyes-Cárdenas, P.O. (2018). Term Functor Logic Tableaux. South American Journal of Logic, 4(1), 1-22.

Correia, M. (2017). “La lógica aristotélica y sus perspectivas.” Pensamiento, 73(275), pp. 5-19.

D’Agostino, Marcello, Dov M. Gabbay, Reiner Hähnle y Joachim Posegga (1999), Handbook of Tableau Methods, Springer.

Englebretsen, George (1987), The New Syllogistic, Peter Lang.

Englebretsen, George (1988), “Preliminary Notes on a New Modal Syllogistic”, Notre Dame J. Formal Logic 29(3), 381-395.

Englebretsen, George (1991), “Linear Diagrams for Syllogisms (with Relationals)”, Notre Dame J. Formal Logic, 33(1), 37-69.

Englebretsen, George (1996), Something to Reckon with: The Logic of Terms, University of Ottawa Press.

Englebretsen, George y Charles Sayward (2011), Philosophical Logic: An Introduction to Advanced Topics, Bloomsbury Academic.

Geach, Peter (1962), Reference and Generality: An Examination of Some Medieval and Modern Theories, Cornell University Press.

Geach, Peter (1980), Logic Matters, University of California Press.

Keil, Frank (2005), “Exploring Boundary Conditions on the Structure of Knowledge: Some Nonobvious Influences of Philosophy on Psychology”, en David S. Oderberg (ed.), The Old New Logic: Essays on the Philosophy of Fred Sommers, Bradford, 67-84.

Khemlani, Sangeet y Philip N. Johnson-Laird (2012), “Theories of the Syllogism: a Meta-Analysis”, Psychological Bulletin, 427-457.

Kuhn, Steven (1983), “An Axiomatization of Predicate Functor Logic”, Notre Dame J. Formal Logic, 24(2), 233-241.

Malink, Marko (2006), “A Reconstruction of Aristotle’s Modal Syllogistic”, History and Philosophy of Logic, 27, 95-141.

Moss, Larry (2015), “Natural logic”, en S. Lappin y C. Fox (eds.), The Handbook of Contemporary Semantic Theory, John Wiley & Sons.

Mozes, Eyal. (1989), “A Deductive Database Based on Aristotelian Logic”, Journal of Symbolic Computation, 7(5), 487-507.

Murphree, Wallace (1998), “Numerical Term Logic”, Notre Dame J. Formal Logic,39(3), pp. 346-362.

Noah, Aris (1980), “Predicate-functors and the Limits of Decidability in Logic”, Notre Dame J. Formal Logic, 21(4), 701-707.

Noah, Aris (2005), “Sommers’s Cancellation Technique and the Method of Resolution”, en David S. Oderberg (ed.), The Old New Logic: Essays on the Philosophy of Fred Sommers, Bradford, 69- 182.

Peterson, Philip L. (1979), “On the Logic of “few”, “many”, and “most”,” Notre Dame J. Formal Logic, 20, 155-179.

Priest, Graham (2008), An Introduction to Non-Classical Logic: From If to Is. Cambridge University Press.

Quine, Willard Van Orman (1970), Philosophy of Logic, Englewood Cliffs, N.J.: Prentice Hall.

Quine, Willard Van Orman (1971), “Predicate Functor Logic”, en J. E. Fenstad (ed.) Proceedings of the Second Scandinavian Logic Symposium, North-Holland.

Rini, Adriane A. (1998), “Is There a Modal Syllogistic?”, Notre Dame J. Formal Logic, 39(4), 554-572.

Russell, Bertrand (1937), A critical exposition of the philosophy of Leibniz: with an appendix of leading passages, G. Allen & Unwin.

Simons, P. (2020). “Term Logic.” Axioms, 9(18).

Sommers, Fred (1967), “On a Fregean Dogma”, en I. Lakatos (ed.), Problems in the Philosophy of Mathematics, volumen 47 de Studies in Logic and the Foundations of Mathematics, Elsevier, 47- 81.

Sommers, Fred (1982), The Logic of Natural Language, Oxford University Press.

Sommers, Fred (2005), “Intellectual Autobiography”, en David S. Oderberg (ed.), The Old New Logic: Essays on the Philosophy of Fred Sommers, Bradford, 1-24.

Sommers, Fred y George Englebretsen (2000), An Invitation to Formal Reasoning: The Logic of Terms. Ashgate.

Thom, Paul (1996), The Logic of Essentialism. An Interpretation of Aristotle’s Modal Syllogistic, Dordrecht: Kluwer

Thompson, Bruce (1982), “Syllogisms using “few”, “many”, and “most”,” Notre Dame J. Formal Logic, 23(1), 75-84.

Thompson, Bruce (1986), “Syllogisms with Statistical Quantifiers”, Notre Dame J. Formal Logic, 27(1), pp. 93-103.

Veatch, Henry Babcock (1970), Intentional Logic: A Logic Based on Philosophical Realism, Archon Books.

Published
01-01-2026
How to Cite
Castro-Manzano, J.-M. (2026). A Terministic Translation of Moss’ Natural Logic. Daimon Revista Internacional De Filosofia, (97), 109–132. https://doi.org/10.6018/daimon.466741
Issue
Section
Artículos