Design guide for Smart Classrooms base on environmental factors
Abstract
The design of the classrooms, physical spaces where learning takes place, is acquiring more and more prominence. Recent studies reveal that its characteristics condition, to a great extent, the entire educational process and have effects on teachers and students. The control and management of the parameters that distinguish them direct attention towards more intelligent learning spaces (Smart Classroom), where the use of technology is especially relevant. In this context, this study proposes an analysis of one of the dimensions that characterize them (environmental conditions) and the consequences they have on users. The research raised as a design-based research (DBR) starts from a literature review to determine which are the most influential environmental factors in the teaching-learning process and establish certain acceptable parametric values for each of them within school environments. The information obtained is exposed in a first prototype on classroom design, which, after validation by experts, is formalized in the definitive Smart Classrooms Design Guide based on environmental conditions. In it, design and use recommendations and optimal technical considerations are set out so that the agents involved in its gestation, construction, equipment and conformation are aware of the number of factors on which they can act to achieve stimulating, versatile, flexible, safe, comfortable and sustainable spaces. Even more research is needed in this sense, but this first step helps to understand that the design of learning spaces supported by the use of technology is a good way to achieve smarter classroom solutions where all the current teaching methodological proposals have a place.
Downloads
References
Aguilar, A. J., de la Hoz, M. L., Martínez, M. D. y Ruiz, D. P. (2020). Management of acoustic comfort in learning spaces using building information modelling (BIM). Occupational and Environmental Safety and Health II, 409–417.https://doi.org/10.1007/978-3-030-41486-3_44
Al-Hunaiyyan, A., Al-Sharhan, S. y Alhajri, R. (2017). A new mobile learning model in the context of smart classroom environment: A holistic approach. International Journal of Interactive Mobile Technologies (iJIM), 11(3), 39-56. https://doi.org/10.3991/ijim.v11i3.6186
Al-Lal, F.M. (2021). Aula inteligente: Definición y evolución. Didasc@lia: Didáctica y Educación, 12(2), 96-118. https://bit.ly/3NydHme
Amin, N. D. M., Akasah, Z. A. y Razzaly, W. (2015). Architectural evaluation of thermal comfort: Sick building syndrome symptoms in engineering education laboratories. Procedia - Social and Behavioral Sciences, 204, 19–28. https://doi.org/10.1016/j.sbspro.2015.08.105
Aparicio-Ruiz, P., Barbadilla-Martín, E., Guadix, J., y Muñuzuri, J. (2021). A field study on adaptive thermal comfort in Spanish primary classrooms during summer season. Building and Environment, 203, 108089. https://doi.org/10.1016/j.buildenv.2021.108089
Barrett, P., Zhang, Y., Moffat, J. y Kobbacy, K. (2013). A holistic, multi-level analysis identifying the impact of classroom design on pupils’ learning. Building and Environment, 59, 678–689. https://doi.org/10.1016/j.buildenv.2012.09.016
Barrett, P., Zhang, Y., Davies, F. y Barrett, L. (2015). Clever Classrooms. Amsterdam University Press.
Barrett, P., Davies, F., Zhang, Y. y Barrett, L. (2015b). The impact of classroom design on pupils’ learning: Final results of a holistic, multi-level analysis. Building and Environment, 89, 118–133. https://doi.org/10.1016/j.buildenv.2015.02.013
Barrett, P., Davies, F., Zhang, Y., y Barrett, L. (2017). The holistic impact of classroom spaces on learning in specific subjects. Environment and Behavior, 49(4), 425-451. http://doi.org/10.1177/0013916516648735
Baydas, O., Kucuk, S., Yilmaz, R. M., Aydemir, M., y Goktas, Y. (2015). Educational technology research trends from 2002 to 2014. Scientometrics, 105(1), 709-725. http://doi.org/10.1007/s11192-015-1693-4
Castilla, N., Llinares, C., Bisegna, F., y Blanca-Giménez, V. (2018). Affective evaluation of the luminous environment in university classrooms. Journal of Environmental Psychology, 58, 52–62. https://doi.org/10.1016/j.jenvp.2018.07.010
Castellucci, H. I., Arezes, P. M., Molenbroek, J. F. M., de Bruin, R. y Viviani, C. (2016). The influence of school furniture on students’ performance and physical responses: results of a systematic review. Ergonomics, 60(1), 93–110. https://doi.org/10.1080/00140139.2016.1170889
Cebrián, G., Mogas, J. & Palau, R. (2020). The smart classroom as a means to the development of ESD methodologies. Sustainability, 12(7), 3010. https://doi.org/10.3390/su12073010
De Benito, B. & Salinas, J.M. (2016). La investigación basada en diseño en Tecnología Educativa. RIITE. Revista Interuniversitaria de Investigación en Tecnología Educativa, 0, 44-59. https://doi.org/10.6018/riite2016/260631
Dron, J. (2018). Smart learning environments, and not so smart learning environments: a systems view. Smart Learning Environments, 5(1). https://doi.org/10.1186/s40561-018-0075-9
Durán, A., Álvarez, J., del Río, M.C. & Sarango, P.O (2018). Analysis of the scientific literature published on smart learning. Revista Espacios, 39(10), 7-18. https://bit.ly/3aCrBp8
Duyan, F., y Rengin, N. (2016). A research on the effect of classroom wall colours on student’s attention. A/Z : ITU journal of Faculty of Architecture, 13(2), 73–78. https://doi.org/10.5505/itujfa.2016.57441
Easterday, M. W., Rees Lewis, D. G., y Gerber, E. M. (2018). The logic of design research. Learning: Research and Practice, 4(2), 131-160. https://doi.org/10.1080/23735082.2017.1286367
Ekasiwi, S. N. N., Antaryama, I. G. N., Krisdianto, J. y Ulum, M. S. (2018). Correlation of classroom typologies to lighting energy performance of academic building in warm-humid climate (case study: ITS Campus Sukolilo Surabaya). IOP Conference Series: Earth and Environmental Science, 126, 1-11. https://doi.org/10.1088/1755-1315/126/1/012049
Escobar, J. y Cuervo, A. (2008). Validez de contenido y juicio de expertos: una aproximación a su utilización. Avances en Medición, 6(1), 27-36. https://bit.ly/3lbYo6h
Hartikainen, J., Poikkeus, A. M., Haapala, E. A., Sääkslahti, A. y Finni, T. (2021). Associations of classroom design and classroom-based physical cctivity with behavioral and emotional engagement among primary school students. Sustainability, 13(14), 8116. https://doi.org/10.3390/su13148116
Istrate, M. A., Catalina, T., Cucos, A., y Dicu, T. (2016). Experimental measurements of VOC and radon in two Romanian classrooms. Energy Procedia, 85, 288–294. https://doi.org/10.1016/j.egypro.2015.12.254
Ito, K. y Yokoyama, Y. (2018). Relationship between classroom plan types and the degree of concentration of the children in elementary schools: A comparative study of open‐plan classrooms and conventional‐plan classrooms. Japan Architectural Review, 2(1), 88–100. https://doi.org/10.1002/2475-8876.12074
Kinshuk, Chen, N. S., Cheng, I.3 L. & Chew, S. W. (2016). Evolution Is not enough: Revolutionizing current learning environments to smart learning environments. International Journal of Artificial Intelligence in Education, 26(2), 561–581. https://doi.org/10.1007/s40593-016-0108-x
Lewinski, P. (2015). Effects of classrooms’ architecture on academic performance in view of telic versus paratelic motivation: a review. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00746
Li, B., Kong, S. C. y Chen, G. (2015). Development and validation of the smart classroom inventory. Smart Learning Environments, 2(1), 1-18. https://doi.org/10.1186/s40561-015-0012-0
Llinares, C., Castilla, N. y Higuera-Trujillo, J. L. (2021). Do attention and memory tasks require the same lighting? A study in university classrooms. Sustainability, 13(15), 8374. https://doi.org/10.3390/su13158374
Macedo, A. C., Morais, A. V., Martins, H. F., Martins, J. C., Pais, S. M. y Mayan, O. S. (2014). Match between classroom dimensions and students’ anthropometry. Human Factors: The Journal of the Human Factors and Ergonomics Society, 57(1), 48–60. https://doi.org/10.1177/0018720814533991
McMillan, J.H. y Schumacher, S. (2005). Investigación educativa (5º Ed.). Pearson.
Mogas, J. (2021). Resum de la tesi doctoral «Smart Classrooms i l’adveniment de la Quarta Revolució Industrial: anàlisi dels factors clau per al disseny d’aules intel·ligents». Universitas Tarraconensis. Revista de Ciències de l’Educació, 1(3), 61. https://doi.org/10.17345/ute.2020.3.2996
Mogas, J., Márquez, M. y Palau, R. (2020). Condiciones ambientales en las aulas inteligentes: Conceptualización y principales necesidades en investigación. En E. López, D. Cobos, L. Molina, A. Jaén, y A. H. Martín (Eds.), Claves para la innovación pedagógica ante los nuevos retos: respuestas en la vanguardia de la práctica educativa (pp. 3164–3172). Octaedro. https://bit.ly/3O2tzgU
Mogas, J. y Palau, R. (2021). Del rediseño de los espacios de aprendizaje hacia aulas inteligentes. En A. J. Calvillo (Coord), Informe Especial Odite sobre tendencias educativas: Educación en tiempos de pandemia 2020 (pp.96-101). Observatorio de Investigación Tecnológica y Educativa (OdITE). https://bit.ly/3HvPv2V
Mogas, J., Palau, R., y Márquez, M. (2021). How classroom acoustics influence students and teachers: A systematic literature review. Journal of Technology and Science Education, 11(2), 245. https://doi.org/10.3926/jotse.1098
Montiel, I., Mayoral, A. M., Navarro Pedreño, J. y Maiques, S. (2019). Acoustic comfort in learning spaces: Moving towards sustainable development goals. Sustainability, 11(13), 3573. https://doi.org/10.3390/su11133573
Muñoz, J. (2016). El impacto del diseño del espacio y otras variables socio-físicas en el proceso de enseñanza-aprendizaje. [Tesis doctoral, Universidade da Coruña]. https://bit.ly/3O1fy2L
Muñoz, C. A. (2018). Diseño pasivo de aulas escolares para el confort térmico, desde una perspectiva para el cambio climático. Arquitecturas del Sur, 36(54), 70–83. https://doi.org/10.22320/07196466.2018.36.054.06
Norazman, N., Irfan Che Ani, A., Haslina Ja’afar, N., y Azry Khoiry, M. (2018). Indoor Air Quality (IAQ): Accuracy of natural ventilation for temperature, air flow rate and relative humidity (RH) in school building classrooms. International Journal of Engineering & Technology, 7(3.9), 42. https://doi.org/10.14419/ijet.v7i3.9.15271
Palau, R. y Mogas, J. (2019). Systematic literature review for a characterization of the smart learning environments. En A.M. Cruz y A.I. Aguilar (Eds.) Propuestas multidisciplinares de innovación e intervención educativa (pp. 55-71). Universidad Internacional de Valencia. https://bit.ly/3moLyT1
Plomp, T. (2013). Educational design research: An introduction. En T. Plomp y N. Nieveen (Eds.), An Introduction to Educational Design Research (pp. 10-51). SLO.
Prendes, M.P., González, V., Castañeda, L., Gutiérrez, I., Román, M., Sánchez, M.M., Serrano, J.L. & Solano, I. (2017). Trabajo fin de máster en tecnología educativa. Orientaciones para la elaboración y criterios de calidad. Editum.
Rajagopalan, P., Andamon, M. M., y Woo, J. (2021). Year long monitoring of indoor air quality and ventilation in school classrooms in Victoria, Australia. Architectural Science Review, 1–13. https://doi.org/10.1080/00038628.2021.1988892
Ricciardi, P. y Buratti, C. (2018). Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Building and Environment, 127, 23–36. https://doi.org/10.1016/j.buildenv.2017.10.030
Riffelli, S. (2021) Global comfort indices in indoor environments: A survey. Sustainability, 13(22), 12784. https://doi.org/10.3390/su132212784
Romero-Ariza, M. (2014). Uniendo investigación, política y práctica educativas: DBR, desafíos y oportunidades. Magis, Revista Internacional De Investigación en Educación, 7(14), 159–176. https://doi.org/10.11144/Javeriana.M7-14.UIPP
Rodríguez, D. y Valldeoriola, J. (2009). Metodología de la investigación. Universitat Oberta de Catalunya.
Ru, T., de Kort, Y. A., Smolders, K. C., Chen, Q. y Zhou, G. (2019). Non-image forming effects of illuminance and correlated color temperature of office light on alertness, mood, and performance across cognitive domains. Building and Environment, 149, 253–263. https://doi.org/10.1016/j.buildenv.2018.12.002
Tanic, M., Nikolic, V. y Zugic, Z. (2020). The spatial model of the classroom and its immediate surroundings: A variety of learning spaces. Current Science, 118(9), 1354. https://doi.org/10.18520/cs/v118/i9/1354-1364
Valverde-Berrocoso, J. (2016). La investigación en Tecnología Educativa y las nuevas ecologías del aprendizaje: Design-Based Research (DBR) como enfoque metodológico. RIITE Revista Interuniversitaria de Investigación en Tecnología Educativa, 0, 60-73. https://bit.ly/3mkdRBQ
Vidal, R. A. y Vera, C. (2020). Influencia del color del aula en los resultados de aprendizaje en 3° año básico: estudio comparativo en un colegio particular subvencionado en Santiago de Chile. Revista Educación, 91–113. https://doi.org/10.15517/revedu.v44i2.37283
Wu, X., Kou, Z., Oldfield, P., Heath, T., y Borsi, K. (2021). Informal Learning Spaces in Higher Education: Student Preferences and Activities. Buildings, 11(6), 252. https://doi.org/10.3390/buildings11060252
Yan, Y. H., Lee, T. G., Guan, Y., y Liu, X. D. (2012). Evaluation index study of students’ physiological rhythm effects under fluorescent lamp and LED. Advanced Materials Research, 433-440, 4757–4764. https://doi.org/10.4028/www.scientific.net/amr.433-440.4757
Zomorodian, Z. S. y Tahsildoost, M. (2017). Assessment of window performance in classrooms by long term spatial comfort metrics. Energy and Buildings, 134, 80–93. https://doi.org/10.1016/j.enbuild.2016.10.018
Copyright (c) 2023 Pedro Moreno-Moreno y Ramón Palau
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal accept the following terms:
a. The authors will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the Creative Commons License. Non-commercial attribution 4.0 International that allows to share, copy, and redistribute the material in any medium or format and adapt, remix, transform and build on the material in the following terms:
Recognition - You must give the appropriate credit, provide a link to the license, and indicate if changes have been made. You may do so in any reasonable manner, but not in a way that suggests that the licensor or its use endorses it. Non-commercial - You cannot use the material for commercial purposes. Share under it - If you remix, transform, or create on the material, your contributions must be distributed under the same license as the original.
b. Authors may adopt other non-exclusive licensing agreements for the distribution of the published work (e.g. deposit it in an institutional telematic file or publish it in a monographic volume) whenever the initial publication in this journal is indicated.
c. Authors are allowed and encouraged to distribute their work through the Internet (e.g. in institutional telematic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).
d. In any case, the Editorial Team understands that the opinions expressed by the authors are their exclusive responsibility.