Combined use of freeware and analytical techniques to improve the understanding of chemical equilibrium diagrams
Abstract
In the present work, the advantages of combining the use of the freeware Spana to plot equilibrium diagrams with different laboratory analytical techniques have been investigated. The software Spana has been used to plot speciation diagrams of different solutions of phosphoric acid and its salts. The resulting diagrams have been correlated with the results obtained by conductimetric titration and colorimetry under the framework of the realization of a Master Thesis by a student of Chemical Engineering. The results achieved demonstrate that the combined use of experimental techniques and user-friendly software aid in the comprehension of the relevance that shifts in the chemical equilibrium could have on different engineering processes by students of Chemical Engineering. The proposed methodology reduces the time that students need to understand problems related to chemical equilibria and could be implemented, not only during the completion of Master Thesis’, but also in laboratory courses related with subjects of Chemical Analysis.
Downloads
References
Briones, L., & Escola, J. M. (2019). Application of the Microsoft Excel Solver tool in the solution of optimization problems of heat exchanger network systems. Education for Chemical Engineers, 26, 41–47.
Brown, P. (2009). Understanding Solubility through Excel Spreadsheets. Journal of Chemical Education, 78(2), 268–270. https://doi.org/10.1021/ed078p268
Cabero Almenara, J. (2016). ¿Qué debemos aprender de las pasadas investigaciones en Tecnología Educativa? Revista Interuniversitaria de Investigación En Tecnología Educativa, 0, 23–33. https://doi.org/10.6018/riite/2016/256741
Cress, N. L., Robinson, M. A., Corner, L., Legge, R. L., & Ricardez-Sandoval, L. A. (2012). Problem-solving and concept integration using a computational tool in first-year undergraduate chemical engineering. Education for Chemical Engineers, 7(3), e133–e138. https://doi.org/10.1016/j.ece.2012.05.001
Creswell, J. W. (2013). Qualitative inquiry & research design : choosing among five approaches (3rd ed.). SAGE publications.
Eastman, M. G., Christman, J., Zion, G. H., & Yerrick, R. (2017). To educate engineers or to engineer educators?: Exploring access to engineering careers. Journal of Research in Science Teaching, 54(7), 884–913. https://doi.org/10.1002/tea.21389
García-Antón, J., Pérez-Herranz, V., Guiñón, J. L., & Nachiondo-Farinós, T. (2001). ChemGraph : estudio de los equilibrios químicos, tratamiento gráfico por ordenador. Editorial Universidad Politécnica de Valencia.
Gonzálvez-Zafrilla, J. M., Santafé-Moros, A., Catalán-Martínez, D., Toldrá-Reig, F., & Martí-Calatayud, M. C. (2019). Desarrollo y aplicación del software DISEVAP_edu como apoyo al aprendizaje del diseño y análisis de procesos de evaporación de múltiples efectos. In IN-RED 2019. V Congreso de Innovación Educativa y Docencia en Red (pp. 1165–1177). Editorial Universitat Politècnica de València. https://doi.org/10.4995/inred2019.2019.10481
Gozálvez Zafrilla, J.M. Santafé Moros, M. A. (2016). Cálculo con Mathcad del proceso de concentración de un tanque con una membrana. https://bit.ly/3bhn5YD
Gros, B. (2009). Retos y tendencias sobre el futuro de la investigación acerca del aprendizaje con tecnologías digitales. RED. Revista de Educación a Distancia, 32.
Ibanez, J. G., Balderas-Hernandez, P., Garcia-Pintor, E., Barba-Gonzalez, S. N., Doria-Serrano, M. C., Hernaiz-Arce, L., Diaz-Perez, A., & Lozano-Cusi, A. (2011). Laboratory experiments on the electrochemical remediation of the environment. Part 9: Microscale recovery of a soil metal pollutant and its extractant. Journal of Chemical Education, 88(8), 1123–1125. https://doi.org/10.1021/ed101033h
Kim, S., Choi, H., & Paik, S. H. (2019). Using a systems thinking approach and a scratch computer program to improve students’ understanding of the brønsted-lowry acid-base model. Journal of Chemical Education, 96(12), 2926–2936. https://doi.org/10.1021/acs.jchemed.9b00210
Láng-Lázi, M., Dióspatonyi, I., Petz, D., Viczián, Z., & Fetter, G. (1999). Computer and multimedia in chemical engineering education. Computers & Chemical Engineering, 23, S637–S640. https://doi.org/10.1016/S0098-1354(99)80156-2
Lou, A. J., & Jaeggi, S. M. (2020). Reducing the prior‐knowledge achievement gap by using technology‐assisted guided learning in an undergraduate chemistry course. Journal of Research in Science Teaching, 57(3), 368–392. https://doi.org/10.1002/tea.21596
Macey, A., Gurguis, N., Tebboth, M., Shah, P. S., Chesi, C., Shah, U. V., & Brechtelsbauer, C. (2018). Teaching reaction kinetics with chemiluminescence. Education for Chemical Engineers, 22, 53–60. https://doi.org/10.1016/j.ece.2017.12.001
Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2012). Study of the effects of the applied current regime and the concentration of chromic acid on the transport of Ni2+ ions through Nafion 117 membranes. Journal of Membrane Science, 392–393, 137–149. https://doi.org/10.1016/j.memsci.2011.12.012
Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2018). Mass Transfer Phenomena during Electrodialysis of Multivalent Ions: Chemical Equilibria and Overlimiting Currents. Applied Sciences, 8(9), 1566. https://doi.org/10.3390/app8091566
Martín, A., & Mato, F. A. (2008). Hint: An educational software for heat exchanger network design with the pinch method. Education for Chemical Engineers, 3, e6–e14.
Martínez Pons, J. (2017). Preparación de una pintura como hilo conductor de un bloque didáctico temático. Anales de La Real Sociedad Española de Química, 113(2), 113–120.
Paricio Royo, J. (2018). Marco de desarrollo profesional del profesorado universitario. Planteamiento general y dimensiones. Red Estatal de Docencia Universitaria, REDU. https://doi.org/10.1017/CBO9781107415324.004
Rowe, L. (2017). Green Fluorescent Protein-Focused Bioinformatics Laboratory Experiment Suitable for Undergraduates in Biochemistry Courses. Journal of Chemical Education, 94(5), 650–655. https://doi.org/10.1021/acs.jchemed.6b00533
Santafé Moros, A., Gozálvez-Zafrilla, J. M., Toldrá-Reig, F., Catalán-Martínez, D., & Martí-Calatayud, M. C. (2019). Uso combinado de VBA y Solver de Excel para la realización de ejercicios de optimización en ficheros Excel fácilmente evaluables. In IN-RED 2019. V Congreso de Innovación Educativa y Docencia en Red (pp. 1178–1191). Editorial Universitat Politècnica de València. https://doi.org/10.4995/inred2019.2019.10482
Santafé Moros, M. (2008). Determinación de la situación mínima en extracción líquido-líquido a contracorriente (Laboratorio virtual de simulación). https://bit.ly/2z9VmuF
Seidman, I. (2006). Interviewing as qualitative research: A guide for researchers in education & the social sciences (3rd ed.). Teachers College Press.
Selmer, A., Kraft, M., Moros, R., & Colton, C. K. (2007). Weblabs in Chemical Engineering Education. Education for Chemical Engineers, 2(1), 38–45. https://doi.org/10.1205/ece06018
Serrano-Perez, J. J. (2018). Aprender física y química “jugando” con laboratorios virtuales. Revista de La Real Sociedad Española de Química, 114(1), 40–41.
Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15(1), 10–23. https://doi.org/10.1039/c3rp00111c
Tomás Serrano, A., & Garcia Molina, R. (2017). Determinación de la constante de Avogadro mediante una experiencia de electrólisis realizada con productos de bajo coste. Anales de La Real Sociedad Española de Química, 113(1), 47–53.
Vander-Griend, D. A. (2011). Equilibrator: Modeling chemical equilibria with Excel. Journal of Chemical Education, 88(12), 1727–1729. https://doi.org/10.1021/ed200119e
Wu, N., Kubo, T., Hall, A. O., Zurcher, D. M., Phadke, S., Wallace, R. L., & McNeil, A. J. (2019). Adapting Meaningful Learning Strategies to Teach Liquid-Liquid Extractions. Journal of Chemical Education, 97(1), 80–86. https://doi.org/10.1021/acs.jchemed.9b00717
Copyright (c) 2020 Emma Ortega Navarro, Manuel César Martí Calatayud, Valentín Pérez Herranz, Montserrat García Gabaldón, Jordi Carrillo Abad
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who have publications with this journal accept the following terms:
a. The authors will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the Creative Commons License. Non-commercial attribution 4.0 International that allows to share, copy, and redistribute the material in any medium or format and adapt, remix, transform and build on the material in the following terms:
Recognition - You must give the appropriate credit, provide a link to the license, and indicate if changes have been made. You may do so in any reasonable manner, but not in a way that suggests that the licensor or its use endorses it. Non-commercial - You cannot use the material for commercial purposes. Share under it - If you remix, transform, or create on the material, your contributions must be distributed under the same license as the original.
b. Authors may adopt other non-exclusive licensing agreements for the distribution of the published work (e.g. deposit it in an institutional telematic file or publish it in a monographic volume) whenever the initial publication in this journal is indicated.
c. Authors are allowed and encouraged to distribute their work through the Internet (e.g. in institutional telematic archives or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).
d. In any case, the Editorial Team understands that the opinions expressed by the authors are their exclusive responsibility.