Conocimiento de la Inteligencia Artificial Generativa del profesorado. Modelo predictivo basado en el TPACK para la integración ética de la Inteligencia Artificial Generativa en la Educación Superior

Autores/as

DOI: https://doi.org/10.6018/reifop.690971
Palabras clave: Inteligencia Artificial Generativa, TPACK, Formación docente, Evaluación ética tecnológica, PLS-SEM

Resumen

La Inteligencia Artificial Generativa (IAGen) se ha incorporado rápidamente en la educación, aportando personalización, tutoría automatizada y evaluaciones más eficientes, pero también generando retos éticos como el sesgo, la privacidad y la integridad académica, que requieren una formación docente informada. Este estudio buscó validar un modelo predictivo que explica la relación entre las dimensiones del modelo TPACK adaptadas a la IAGen y la Evaluación Ética Tecnológica (TEAK). Mediante un enfoque cuantitativo, se aplicó un cuestionario de 25 ítems a 240 docentes de la Universidad Nacional Abierta y a Distancia de Colombia. El análisis con Modelado de Ecuaciones Estructurales (PLS-SEM) mostró alta fiabilidad y validez (Alfa de Cronbach: 0,935–0,976). Los docentes presentaron actitudes entre “neutral” y “de acuerdo”, destacando el Conocimiento Tecnológico como la dimensión más fuerte. Los resultados indican que conocer la herramienta no garantiza un uso pedagógico adecuado, por lo que es esencial integrar aspectos éticos y didácticos en la formación docente. El modelo validado se propone como una guía útil para promover un uso ético y reflexivo de la IAGen en la educación universitaria.

Descargas

Los datos de descargas todavía no están disponibles.
Metrics
Vistas/Descargas
  • Resumen
    79
  • pdf
    31

Biografía del autor/a

Antonio Palacios Rodríguez, Universidad de Sevilla

Doctor en Ciencias de la Educación por la Universidad de Sevilla. También ha realizado el Máster Universitario en Dirección, Evaluación y Calidad de las Instituciones de Formación y Grado en Educación Primaria. Es miembro del Grupo de Investigación Didáctica (GID-HUM 390): Análisis Tecnológico y cualitativo. Actualmente trabaja en el Departamento de Didáctica y Organización Educativa de la Facultad de Ciencias de la Educación, Universidad de Sevilla como Profesor Permanente Laboral. Su experiencia docente e investigadora está relacionada con la Tecnología Educativa y la formación del profesorado. Ha ganado el Premio al Mejor Artículo Científico de la Facultad de Ciencias de la Educación (Universidad de Sevilla) y Premio UNIA-DIGITAL a la Investigación (Universidad Internacional de Andalucía).

Citas

Akram, H., Yingxiu, Y., Al-Adwan, A., & Alkhalifah, A. (2021). Technology integration in higher education during COVID-19: An assessment of online teaching competencies through Technological Pedagogical Content Knowledge model. Frontiers in Psychology, 12, 736522. https://doi.org/10.3389/fpsyg.2021.736522

Albarran, E. (2023). Hacia una educación personalizada y adaptativa: la disrupción de la inteligencia artificial. Centro Internacional de Educación Continua - Universidad Pedagógica Experimental Libertador.

Bagozzi, R., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Sciences, 16, 74–94. https://doi.org/10.1007/BF02723327

Bond, M., et al. (2024). A meta systematic review of artificial intelligence in higher education: A call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education, 21(4), 4. https://doi.org/10.1186/s41239-023-00436-z

Cabero-Almenara, J. (Dir.). (2014). La formación del profesorado en TIC: modelo TPACK. SAV de la Universidad de Sevilla.

Cabero-Almenara, J., Barroso-Osuna, J., Guillén-Gámez, D., & Palacios, A. (2025). Creencias pedagógicas docentes y su aceptación de la inteligencia artificial en la educación superior: Un estudio comparativo entre países. Aula Abierta, 54(3), 257–268. https://doi.org/10.17811/rifie.21273

Cabero-Almenara, J., Palacios Rodríguez, A., Llorente-Cejudo, C., & Barroso-Osuna, J. (2026). Aceptación de ChatGPT en educación superior: Actitudes y percepciones del modelo UTAUT2. REICE. Revista Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 24(1). https://doi.org/10.15366/reice2025.23.4.001

Cabero-Almenara, J., Palacios-Rodríguez, A., Loaiza-Aguirre, M. I., & Andrade-Abarca, P. S. (2024). The impact of pedagogical beliefs on the adoption of generative AI in higher education: Predictive model from UTAUT2. Frontiers in Artificial Intelligence, 7, 1497705. https://doi.org/10.3389/frai.2024.1497705

Carmines, E., & Zeller, R. (1979). Reliability and validity assessment. Sage.

Celik, I. (2023). Towards Intelligent-TPACK: An empirical study on teachers’ professional knowledge to ethically integrate artificial intelligence (AI)-based tools into education. Computers in Human Behavior, 138, 107468. https://doi.org/10.1016/j.chb.2022.107468

Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends, 66, 616–630. https://doi.org/10.1007/s11528-022-00715-y

Chiu, T. (2023). The impact of generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments. Advance online publication. https://doi.org/10.1080/10494820.2023.2253861

Choi, S., Jang, Y., & Kim, H. (2023). Influence of pedagogical beliefs and perceived trust on teachers’ acceptance of educational artificial intelligence tools. International Journal of Human Computer Interaction, 39, 910–922. https://doi.org/10.1080/10447318.2022.2049145

Choudhury, S., Prakash, J., Pradhan, P., & Mishra, A. (2024). Validation of the Teachers AI-TPACK Scale for the Indian educational setting. International Journal of Experimental Research and Review, 43, 119–133. https://doi.org/ijerr.2024.v43spl.009

Das, S., & J. V. (2024). Perceptions of higher education students towards ChatGPT. International Journal of Technology in Education, 7(1), 86–106. https://doi.org/10.46328/ijte.583

European Commission. (2022). Ethical guidelines on the use of artificial intelligence (AI) and data in education and training for educators. Publications Office of the European Union.

Funa, A., & Gabay, R. (2025). Policy guidelines and recommendations on AI use in teaching and learning: A meta-synthesis study. Social Sciences & Humanities Open, 11, 101221. https://doi.org/10.1016/j.ssaho.2024.101221

Giannini, S. (2023). Reflections on generative AI and the future of education. UNESCO.

Harmes, J., Welsh, J., & Winkelman, R. (2016). A framework for defining and evaluating technology integration in the instruction of real-world skills. En Y. Rosen, S. Ferrara, & M. Mosharraf (Eds.), Handbook of research on technology tools for real-world skill development (pp. 137–162). IGI Global. https://doi.org/10.4018/978-1-4666-9441-5.ch006

Hava, Ö., & Babayiğit, O. (2025). Exploring the relationship between teachers’ competencies in AI-TPACK and digital proficiency. Education and Information Technologies, 30, 3491–3508. https://doi.org/10.1007/s10639-024-12939-x

Haziq, M., Kalid, M., & Sofwan, M. (2025). Exploring teachers’ technological pedagogical content knowledge in utilising artificial intelligence (AI) for teaching. International Journal of Learning, Teaching and Educational Research, 24(1), 136–151. https://doi.org/10.26803/ijlter.24.1.7

Hernández-Sampieri, R., & Mendoza, C. (2018). Research methodology: Quantitative, qualitative and mixed routes. McGraw-Hill.

Ibragimov, G., et al. (2025). An analysis of science teachers’ use of artificial intelligence in education from a Technological Pedagogical Content Knowledge perspective. Online Journal of Communication and Media Technologies, 15(3), e202523. https://doi.org/10.30935/ojcmt/16594

Katsantonis, A., & Katsantonis, I. (2024). University students’ attitudes toward artificial intelligence: An exploratory study of the cognitive, emotional, and behavioural dimensions of AI attitudes. Education Sciences, 14(9), 988. https://doi.org/10.3390/educsci14090988

Kimmons, R., Graham, C., & West, R. (2020). The PICRAT Model for technology integration in teacher preparation. Universidad Brigham Young.

Lan, G., et al. (2025). Integrating ethical knowledge in generative AI education: Constructing the GenAI-TPACK framework for university teachers’ professional development. Education and Information Technologies. https://doi.org/10.1007/s10639-025-13427-6

Mateo, J. (2004). Ex post-facto research. En F. Bisquerra (Ed.), Research methodology (pp. 195–230). La Muralla.

Mena-Guacas, A., Vázquez-Cano, E., Fernández-Márquez, E., & López-Meneses, E. (2024). La inteligencia artificial y su producción científica en el campo de la educación. Formación Universitaria, 17(1), 155–164. https://doi.org/10.4067/S0718-50062024000100155

Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A new framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054.

Murtiningsih, S., Sujito, A., & Soe, K. (2024). Challenges of using ChatGPT in education: A digital pedagogy analysis. International Journal of Evaluation and Research in Education, 13(5), 3466–3473. https://doi.org/10.11591/ijere.v13i5.29467

Nikolic, S., et al. (2024). A systematic literature review of attitudes, intentions and behaviours of teaching academics pertaining to AI and generative AI (GenAI) in higher education: An analysis of GenAI adoption using the UTAUT framework. Australasian Journal of Educational Technology, 40(6), 56–75. https://doi.org/10.14742/ajet.9643

Ning, Y., et al. (2024). Teachers’ AI-TPACK: Exploring the relationship between knowledge elements. Sustainability, 16, 978. https://doi.org/10.3390/su16030978

Paidecán, M., & Arredondo, P. (2024). A inteligência artificial em contextos de conhecimento técnico pedagógico do conteúdo (TPACK): Uma revisão da literatura. Panorama, 18(35). https://doi.org/10.15765/pkjpwv56

Pedreño, A., et al. (2024). La inteligencia artificial en las universidades: retos y oportunidades. Grupo 1millonbot.

Perezchica-Vega, J., Sepúlveda-Rodríguez, J., & Román, A. (2024). Inteligencia artificial generativa en la educación superior: Usos y opiniones de los profesores. European Public & Social Innovation Review, 9, 1–20. https://doi.org/10.31637/epsir-2024-593

Puentedura, R. (2014a). Building transformation: An introduction to the SAMR. http://www.hippasus.com/rrpweblog/archives/2014/08/22/BuildingTransformation_AnIntroductionToSAMR.pdf

Puentedura, R. (2014b). Learning, technology, and the SAMR model: Goals, processes, and practice. http://www.hippasus.com/rrpweblog/archives/2014/06/29/LearningTechnologySAMRModel.pdf

Ruiz, K., Miramontes, M., & Reyna, C. (2024). Percepciones y expectativas de estudiantes universitarios sobre la IAG. European Public & Social Innovation Review, 9, 1–21. https://doi.org/10.31637/epsir-2024-357

Sahar, R., & Munawaroh, M. (2025). Artificial intelligence in higher education with bibliometric and content analysis for future research agenda. Discover Sustainability, 6, 401. https://doi.org/10.1007/s43621-025-01086-z

Sampeiro, V. (2019). Ecuaciones estructurales en los modelos educativos: Características y fases en su construcción. Apertura, 11(1), 90–103. https://doi.org/10.32870/Ap.v11n1.1402

Saz-Pérez, F., Pizá-Mir, B., & Lizana-Carrió, A. (2024). Validación y estructura factorial de un cuestionario TPACK en el contexto de Inteligencia Artificial Generativa (IAG). Hachetetepé, 28, 1101. https://doi.org/10.25267/Hachetetepe.2024.i28.1101

Schmid, M., Brianza, E., Mok, S., & Petko, D. (2024). Running in circles: A systematic review of reviews on technological pedagogical content knowledge (TPACK). Computers & Education, 214, 105024. https://doi.org/10.1016/j.compedu.2024.105024

Shin, Y. C., & Kim, C. (2024). Pedagogical competence analysis based on the TPACK model: Focus on VR-based survival swimming instructors. Education Sciences, 14, 460. https://doi.org/10.3390/educsci14050460

Strzelecki, A., & ElArabawy, S. (2024). Investigation of the moderation effect of gender and study level on the acceptance and use of generative AI by higher education students. British Journal of Educational Technology. Advance online publication. https://doi.org/10.1111/bjet.13425

Suharmanto, F., Hadi, M., & Imawati, S. (2025). Development of integrated animation videos based on TPACK for improving mathematics learning outcomes. Al-Jabar: Jurnal Pendidikan Matematika, 16(1), 25–36. https://doi.org/10.24042/ajpm.v16i1.25812

Sullivan, M., Kelly, A., & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. Journal of Applied Learning and Teaching, 6(1), 31–40. https://doi.org/10.37074/jalt.2023.6.117

Temitayo, I., Adekunle, M., & Tolorunleke, A. (2024). Investigating pre-service teachers’ artificial intelligence perception from the perspective of planned behavior theory. Computers and Education: Artificial Intelligence, 6, 100202. https://doi.org/10.1016/j.caeai.2024.100202

Thohir, A., et al. (2023). The effects of TPACK and facility condition on preservice teachers’ acceptance of virtual reality in science education course. Contemporary Educational Technology, 15(2), ep407. https://doi.org/10.30935/cedtech/12918

Thohir, A., et al. (2021). Exploring the relationship between personality traits and TPACK-Web of pre-service teachers. Contemporary Educational Technology, 13(4), ep322. https://doi.org/10.30935/cedtech/11128

UNESCO. (2021). International forum on AI and the future of education: Developing competencies for the AI era. UNESCO.

Vélez, R., Muñoz, D., Leal, P., & Ruiz, A. (2024). Uso de inteligencia artificial en educación superior y sus implicancias éticas: Mapeo sistemático de literatura. Hachetetepé, 28, 1–17. https://doi.org/10.25267/Hachetetepe.2024.i28.1105

Vorobyeva, K., et al. (2025). Personalized learning through AI: Pedagogical approaches and critical insights. Contemporary Educational Technology, 17(2), ep574. https://doi.org/10.30935/cedtech/16108

Yan, Z., & Qianjun, T. (2025). Integrating AI-generated content tools in higher education: A comparative analysis of interdisciplinary learning outcomes. Scientific Reports, 15, 25802. https://doi.org/10.1038/s41598-025-10941-y

Publicado
31-12-2025
Cómo citar
Cabero-Almenara, J., Pedraza-Goyeneche, C. E., Fredy-Montes, J., & Palacios Rodríguez, A. (2025). Conocimiento de la Inteligencia Artificial Generativa del profesorado. Modelo predictivo basado en el TPACK para la integración ética de la Inteligencia Artificial Generativa en la Educación Superior. Revista Electrónica Interuniversitaria De Formación Del Profesorado, 29(1), 15–31. https://doi.org/10.6018/reifop.690971