¿Innovación, o resistencia? Comparativa de la intención de uso de futuros docentes de dispositivos móviles en evaluación educativa mediante PLS-SEM

Autores/as

DOI: https://doi.org/10.6018/reifop.656221
Palabras clave: Dispositivos móviles, Evaluación, Modelo de Aceptación Tecnológica, Futuros Docentes

Resumen

La tecnología y su aplicabilidad en evaluación educativa toman un papel relevante en los procesos de innovación, con repercusión directa tanto en la práctica docente como en la formación del profesorado. Por este motivo, analizar los factores que favorecen y limitan su adopción es esencial para diseñar estrategias formativas efectivas. Este estudio examina si la aceptación de dispositivos móviles en evaluación difiere según el nivel educativo, centrándose en futuros docentes de Educación Infantil y Primaria. Para identificar las posibles diferencias, se aplicó un cuestionario basado en el Modelo de Aceptación Tecnológica (TAM), incluyendo sus constructos iniciales junto a la norma subjetiva, la ansiedad ante la tecnología y la resistencia al cambio. Posteriormente, mediante un análisis de ecuaciones estructurales basado en mínimos cuadrados parciales (PLS-SEM), se contrastaron los datos de 268 estudiantes matriculados en los Grados en Maestro en las Facultades de Ávila, Salamanca y Zamora de la Universidad de Salamanca. Los resultados muestran diferencias en los modelos, validándose en Educación Primaria un mayor número de hipótesis relacionales y explicando un mayor porcentaje de la varianza. Estos resultados justifican que la adopción tecnológica varía según el nivel educativo, lo que confirma la necesidad de adaptar la formación docente para atender estas singularidades.

Descargas

Los datos de descargas todavía no están disponibles.
Metrics
Vistas/Descargas
  • Resumen
    1
  • pdf
    3

Biografía del autor/a

Alberto Ortiz-López, Grupo de investigación GRIAL. Instituto Universitario de Ciencias de la Educación (IUCE). Universidad de Salamanca.

Profesor Sustituto en la Universidad de Salamanca. Personal Investigador del Grupo de Investigación en InterAcción y eLearning (GRIAL). Doctor Cum Laude (Mención Internacional) por la Universidad de Salamanca. Máster en Profesor de Educación Secundaria Obligatoria y Bachillerato, Formación Profesional y Enseñanza de Idiomas. Graduado en Pedagogía. Líneas de investigación: evaluación, calidad y aceptación tecnológica en entornos virtuales.

José Carlos Sánchez-Prieto, Grupo de investigación GRIAL. Instituto Universitario de Ciencias de la Educación (IUCE). Universidad de Salamanca.

Profesor Permanente Laboral en la Universidad de Salamanca. Doctor en Educación en la Sociedad del Conocimiento. Graduado en Pedagogía. Miembro del grupo de investigación GRIAL. Líneas de investigación: metodología de la investigación y aceptación tecnológica en el aula.

Susana Olmos-Migueláñez, Grupo de investigación GRIAL. Instituto Universitario de Ciencias de la Educación (IUCE). Universidad de Salamanca.

Profesora Titular de Universidad en la Universidad de Salamanca. Doctora en Pedagogía. Directora del Instituto Universitario de Ciencias de la Educación (IUCE). Miembro del grupo de investigación GRIAL. Líneas de investigación: metodología de la investigación, evaluación de programas y procesos de evaluación en contextos de formación virtual.

Citas

Al-Emran, M., Arpaci, I., & Salloum, S. A. (2020). An empirical examination of continuous intention to use m-learning: An integrated model. Education and Information Technologies, 25(4), 2899-2918. https://doi.org/10.1007/s10639-019-10094-2

Al-Gasawneh, J., Khoja, B., Al-Qeed, M., Nusairat, N., Hammouri, Q., & Anuar, M. (2022). Mobile-customer relationship management and its effect on post-purchase behavior: The moderating of perceived ease of use and perceived usefulness. International Journal of Data and Network Science, 6(2), 439-448.

Anisimova, T. I., Sabirova, F. M., & Shatunova, O. V. (2020). Formation of Design and Research Competencies in Future Teachers in the Framework of STEAM Education. International Journal of Emerging Technologies in Learning (iJET), 15(02), Article 02. https://doi.org/10.3991/ijet.v15i02.11537

Anthony, B., Kamaludin, A., Romli, A., Raffei, A. F. M., Phon, D. N. A. L. E., Abdullah, A., & Ming, G. L. (2022). Blended Learning Adoption and Implementation in Higher Education: A Theoretical and Systematic Review. Technology, Knowledge and Learning, 27(2), 531-578. https://doi.org/10.1007/s10758-020-09477-z

Arregui-Landa, I., Barandiaran-Arteaga, A., Iñurrategi-Irizaragore, N., Larrea-Hermida, I., Martinez-Gorrotxategi, A., & Salegi Arruti, E. (2021). La evaluación en educación infantil. Grao.

Burbules, N. C., Fan, G., & Repp, P. (2020). Five trends of education and technology in a sustainable future. Geography and Sustainability, 1(2), 93-97. https://doi.org/10.1016/j.geosus.2020.05.001

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2.a ed.). Routledge. https://doi.org/10.4324/9780203771587

Dafonte-Gómez, A., Maina, M. F., & García-Crespo, O. (2021). Uso del smartphone en jóvenes universitarios: Una oportunidad para el aprendizaje: [Smartphone use in university students: An opportunity for learning]. Pixel-Bit. Revista de Medios y Educación, 60, 211-227. https://doi.org/10.12795/pixelbit.76861

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Dogan, S., Dogan, N. A., & Celik, I. (2021). Teachers’ skills to integrate technology in education: Two path models explaining instructional and application software use. Education and Information Technologies, 26(1), 1311-1332. https://doi.org/10.1007/s10639-020-10310-4

Dolin, J., Black, P., Harlen, W., & Tiberghien, A. (2018). Exploring Relations Between Formative and Summative Assessment. In J. Dolin and R. Evans (Eds.),. En J. Dolin & R. Evans (Eds.), Transforming Assessment: Through an Interplay Between Practice, Research and Policy (pp. 53-80). Springer International Publishing. https://doi.org/10.1007/978-3-319-63248-3_3

Evans, C., & Robertson, W. (2020). The four phases of the digital natives debate. Human Behavior and Emerging Technologies, 2(3), 269-277. https://doi.org/10.1002/hbe2.196

Fernández-Pérez, R., & Álvarez-Blanco, L. (2019). La evaluación en la etapa de Educación Infantil: Hacia un modelo más inclusivo. En T. Sola-Martínez, M. García-Carmona, A. Fuentes-Cabrera, A. M. Rodríguez-García, & J. López-Belmonte, Innovación educativa en la sociedad digital (pp. 1266-1278). Dykinson.

Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention And Behavior: An introduction to theory and research. Addison-Wesley.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312

García-Aretio, L. (2019). Necesidad de una educación digital en un mundo digital. RIED. Revista iberoamericana de educación a distancia. https://doi.org/10.5944/ried.22.2.23911

García-Peñalvo, F. J., Llorens-Largo, F., & Vidal, J. (2024). La nueva realidad de la educación ante los avances de la inteligencia artificial generativa. Revista Iberoamericana de Educación a Distancia (RIED), 27(1), Article 1. https://doi.org/10.5944/ried.27.1.37716

García-Perales, N., Rincón, M. L. H., & Lantarón, B. S. (2025). Docentes y tecnología: ¿cómo enfrenta el futuro profesorado el uso de la Inteligencia Artificial? Revista Electrónica Interuniversitaria de Formación del Profesorado (REIFOP), 28(1), Article 1. https://doi.org/10.6018/reifop.638431

Geisser, S. (1974). A Predictive Approach to the Random Effect Model. Biometrika, 61(1), 101-107. https://doi.org/10.2307/2334290

Ghitis-Jaramillo, T., Alba-Vásquez, A., & Alba Vásquez, A. (2019). Percepciones de futuros docentes sobre el uso de tecnología en educación inicial. Revista Electrónica de Investigación Educativa, 21. https://doi.org/10.24320/redie.2019.21.e23.2034

González-González, M. A. (2014). Metáforas y paradojas de los miedos en los sujetos docentes. Revista Latinoamericana de Ciencias Sociales, Niñez y Juventud, 12(1).

Guo, X., Sun, Y., Wang, N., Peng, J., & Yan, Z. (2012). The dark side of elderly acceptance of preventive mobile health services in China. Electronic Markets, 23(1). https://doi.org/10.1007/s12525-012-0112-4

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Evaluation of Formative Measurement Models. En J. F. Hair Jr., G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, & S. Ray (Eds.), Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook (pp. 91-113). Springer International Publishing. https://doi.org/10.1007/978-3-030-80519-7_5

Hair, J., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publications.

Hébert, C., Jenson, J., & Terzopoulos, T. (2021). “Access to technology is the major challenge”: Teacher perspectives on barriers to DGBL in K-12 classrooms. E-Learning and Digital Media, 18, 204275302199531. https://doi.org/10.1177/2042753021995315

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8

Hu, P. J.-H., Clark, T. H. K., & Ma, W. W. (2003). Examining technology acceptance by school teachers: A longitudinal study. Information & Management, 41(2), 227-241. https://doi.org/10.1016/S0378-7206(03)00050-8

Ibarra-Sáiz, M. S., Rodríguez-Gómez, G., Boud, D., Rotsaert, T., Brown, S., Salinas-Salazar, M. L., & Rodríguez-Gómez, H. M. (2020). El futuro de la evaluación en la Educación Superior. Revista electrónica de investigación y evaluación educativa. https://doi.org/10.7203/relieve.26.1.17323

Imbernon, F. (2024). Tendencias y retos internacionales en la formación permanente del profesorado para la innovación educativa. RECIE. Revista Caribeña de Investigación Educativa, 8(1), 215-229. https://doi.org/10.32541/recie.2024.v8i1.pp215-229

Karahanna, E., Agarwal, R., & Angst, C. M. (2006). Reconceptualizing compatability beliefs in technology acceptance research. MIS Quarterly, 30(4), 781-804.

Kimmons, R., Clark, B., & Lim, M. (2017). Understanding web activity patterns among teachers, students and teacher candidates. Journal of Computer Assisted Learning, 33(6), 588-596. https://doi.org/10.1111/jcal.12202

Kumar, S., & Upadhaya, G. (2017). Structure Equation Modeling Basic Assumptions and Concepts: A Novices Guide. International Journal of Quantitative and Qualitative Research Methods, 5(4), Article 1.

Moreno-Guerrero, A.-J., Rodríguez-Jiménez, C., Gómez-García, G., & Ramos Navas-Parejo, M. (2020). Educational Innovation in Higher Education: Use of Role Playing and Educational Video in Future Teachers’ Training. Sustainability, 12(6), Article 6. https://doi.org/10.3390/su12062558

Mur-Sangrá, L. (2016). La nueva brecha digital docente. El futuro de las nuevas tecnologías en Primaria desde la formación del profesorado. Revista Electrónica Interuniversitaria de Formación del Profesorado (REIFOP), 19(2), Article 2. https://doi.org/10.6018/reifop.19.2.189561

Nikou, S., & Economides, A. (2017a). Mobile-Based Assessment: Integrating acceptance and motivational factors into a combined model of Self-Determination Theory and Technology Acceptance. Computers in Human Behavior, 68, 83-95. https://doi.org/10.1016/j.chb.2016.11.020

Nikou, S., & Economides, A. (2017b). Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Computers & Education, 109, 56-73. https://doi.org/10.1016/j.compedu.2017.02.005

Olimov, S. S. (2021). The innovation process is a priority in the development of pedagogical sciences. European Journal of Research Development and Sustainability, 2(3), Article 3.

Rahmawati, R. N. (2019). Self-Efficacy and Use of E-learning: A Theoretical Review Technology Acceptance Model (TAM). American Journal of Humanities and Social Sciences Research (AJHSSR), 3(5), 41-55.

Ramayah, T., Hwa, C., Chuah, F., Ting, H., & Memon, M. (2018). Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0: An updated guide and practical guide to statistical analysis (2nd ed.). Pearson.

Ramírez-Rueda, M. del C., Cózar-Gutiérrez, R., Roblizo Colmenero, M. J., & González-Calero, J. A. (2021). Towards a coordinated vision of ICT in education: A comparative analysis of Preschool and Primary Education teachers’ and parents’ perceptions. Teaching and Teacher Education, 100, 103300. https://doi.org/10.1016/j.tate.2021.103300

Rothmann, S. (2015). A structural model of technology acceptance. South African Journal of Industrial Psychology, 41.

Ruíz-Ruano, A. M., & López-Puga, J. (2024). La regulación normativa del uso del móvil en contextos educativos. En O. Buzón-García & M. del C. R. García (Eds.), Aprendizaje 4.0: Inteligencia artificial, redes sociales y rol docente en la era digital. Dykinson.

Sánchez-Prieto, J. C., Hernández-García, Á., García-Peñalvo, F. J., Chaparro-Peláez, J., & Olmos, S. (2019). Break the Walls! Second-Order Barriers and the Acceptance of mLearning by First-Year Pre-Service Teachers. Computers in Human Behavior, 95. https://doi.org/10.1016/j.chb.2019.01.019

Sar, A., & Misra, S. N. (2020). A study on policies and implementation of information and communication technology (ICT) in educational systems. Materials Today, 8. https://doi.org/10.1016/j.matpr.2020.10.507

Skulmowski, A., & Rey, G. D. (2020). COVID-19 as an accelerator for digitalization at a German university: Establishing hybrid campuses in times of crisis. Human Behavior and Emerging Technologies, 2(3), 212-216. https://doi.org/10.1002/hbe2.201

Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111-133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

Teo, T. (2010). Examining the influence of subjective norm and facilitating conditions on the intention to use technology among pre-service teachers: A structural equation modeling of an extended technology acceptance model. Asia Pacific Education Review, 11(2), 253-262. https://doi.org/10.1007/S12564-009-9066-4

Teo, T. (2015). Comparing pre-service and in-service teachers’ acceptance of technology: Assessment of measurement invariance and latent mean differences. Computers & Education, 83. https://doi.org/10.1016/j.compedu.2014.11.015

Teo, T., & van Schaik, P. (2009). Understanding technology Acceptance in pre-service teachers: A structural-equation modeling approach. The Asia-Pacific Education Researcher, 18(1), 47-66.

Torrano-Martínez, R., Ortigosa-Quiles, J. M., Riquelme-Marín, A., & López-Pina, J. A. (2017). Evaluación de la ansiedad ante los exámenes en estudiantes de Educación Secundaria Obligatoria. Revista de Psicología Clínica con Niños y Adolescentes, 4(2), 103-110.

Varona-Klioukina, S., & Engel-Rocamora, A. (2024). Prácticas de personalización del aprendizaje mediadas por las tecnologías digitales: Una revisión sistemática. Edutec: Revista electrónica de tecnología educativa, 87, 236-250. https://doi.org/10.21556/edutec.2024.87.3019

Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

Venkatesh, V., & Davis, F. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46, 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Yu, J.-C., Kuo, L.-H., Chen, L.-M., Yang, H.-J., Yang, H.-H., & Hu, W.-C. (2009). Assessing and managing mobile technostress. WSEAS Transactions on Communications, 8, 416-425.

Publicado
31-12-2025
Cómo citar
Ortiz-López, A., Sánchez-Prieto, J. C., & Olmos-Migueláñez, S. (2025). ¿Innovación, o resistencia? Comparativa de la intención de uso de futuros docentes de dispositivos móviles en evaluación educativa mediante PLS-SEM. Revista Electrónica Interuniversitaria De Formación Del Profesorado, 29(1), 123–142. https://doi.org/10.6018/reifop.656221