Relación entre las competencias digitales docentes y la aceptación y uso de la Inteligencia Artificial en el periodo de formación inicial docente
Abstract
Artificial intelligence (AI) is transforming education, yet its adoption in teacher training still faces challenges. This study examines the relationship between pre-service teachers' digital competencies and their willingness to use AI in teaching. A quantitative ex post facto design was employed, surveying 793 students from Early Childhood and Primary Education programs at Andalusian universities. The DigCompEdu and UTAUT2 frameworks were used to assess digital competencies and technology acceptance, applying structural equation models to identify correlations. Results indicate that, among all analyzed digital competencies, only knowledge of the teaching-learning process significantly influences AI acceptance and use, while other dimensions, such as assessment, professional commitment, and the development of students’ digital skills, do not have a significant impact. The study found that the lack of specific training limits the pedagogical use of AI, despite familiarity with these tools. Findings suggest the need to integrate training programs that strengthen pre-service teachers’ digital and techno-critical competencies. Although this study provides empirical evidence on the importance of AI training, it has limitations related to sample size and methodological approach. Future research could expand the analyzed population and incorporate qualitative methodologies for a deeper understanding of the phenomenon. The study concludes that strengthening teacher training in AI would not only facilitate its adoption but also optimize its impact on learning, promoting a more ethical and effective use of these technologies in education.
Downloads
-
Abstract1710
-
pdf (Español (España))953
References
Acosta-Enriquez, B., Ballesteros, M., Vargas, C., Ulloa, M., Ulloa, C., Romero, J., Jaramillo, N., Orellana, H., Anzoategui, D., & Roca, C. (2024). Knowledge, attitudes, and perceived ethics regarding the use of ChatGPT among Generation Z university students. International Journal for Educational Integrity, 20(1). https://doi.org/10.1007/s40979-024-00157-4
Ayanwale, M. A., Frimpong, E. K., Opesemowo, O. A. G., & Sanusi, I. T. (2024). Exploring factors that support pre-service teachers’ engagement in learning artificial intelligence. Journal for STEM Education Research. https://doi.org/10.1007/s41979-024-00121-4
Aznar-Díaz, I., Cáceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). Alfabetización digital del profesorado de ciencias ambientales: Un análisis de su competencia tecnológica. Luna Azul, 49, 172–184. https://doi.org/10.17151/luaz.2019.49.10
Bozkurt, A. (2024a). GenAI et al.: Co-creation, authorship, ownership, academic ethics and integrity in a time of generative AI. Open Praxis, 16(1), 1–10. https://doi.org/10.55982/openpraxis.16.1.654
Bozkurt, A. (2024b). Tell me your prompts and I will make them true: The alchemy of prompt engineering and generative AI. Open Praxis, 16(2), 111–118. https://doi.org/10.55982/openpraxis.16.2.661
Cavalcanti, E. R., Pires, C. E., Cavalcanti, E. P., & Pires, V. F. (2012). Detection and evaluation of cheating on college exams using supervised classification. Informatics in Education, 11(2), 169–190. https://doi.org/10.15388/infedu.2012.09
De Frutos, N. D., Carrasco, L. C., de la Maza, M. S., & Etxabe-Urbieta, J. M. (2023). Application of artificial intelligence (AI) in education: Benefits and limitations of AI as perceived by primary, secondary, and higher education teachers. Revista Electrónica Interuniversitaria de Formación del Profesorado, 27(1), 207–225. https://doi.org/10.6018/reifop.577211
Delgado Rodríguez, S., García-Fandiño, R., & Carrascal-Domínguez, S. (2023). Tecnología inmersiva e inteligencia artificial para la mejora de la atención a la diversidad, la equidad e inclusión del alumnado: Estudio de caso con realidad aumentada. Dialogia, 47, e25204. https://doi.org/10.5585/47.2023.25204
Demartini, C. G., Sciascia, L., Bosso, A., & Manuri, F. (2024). Artificial intelligence bringing improvements to adaptive learning in education: A case study. Sustainability, 16(3). https://doi.org/10.3390/su16031347
Galindo-Domínguez, H., Delgado, N., Campo, L., & Losada, D. (2024). Relationship between teachers’ digital competence and attitudes towards artificial intelligence in education. International Journal of Educational Research, 126, 102381. https://doi.org/10.1016/j.ijer.2024.102381
Gil-Iranzo, R., Gutiérrez-Ujaque, D., & Teixidó Cairol, M. (2024). From anxiety to empowerment: The impact of artificial intelligence on students' perceptions in higher education. REDU. Revista de Docencia Universitaria, 22(2), 85–104. https://doi.org/10.4995/redu.2024.22009
Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). SAGE.
Henze, J., Schatz, C., Malik, S., & Bresges, A. (2022). How might we raise interest in robotics, coding, artificial intelligence, STEAM, and sustainable development in university and on-the-job teacher training? Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.872637
Kalniņa, D., Nīmante, D., & Baranova, S. (2024). Artificial intelligence for higher education: Benefits and challenges for pre-service teachers. Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1501819
Kong, S. C., Cheung, W. M. Y., & Zhang, G. (2021). Evaluation of an artificial intelligence literacy course for university students with diverse study backgrounds. Computers and Education: Artificial Intelligence, 2, 100026.
Kurt, G., & Kurt, Y. (2024). Enhancing L2 writing skills: ChatGPT as an automated feedback tool. Journal of Information Technology Education: Research, 23. https://doi.org/10.28945/5370
Lucas, M., Zhang, Y., Bem-haja, P., & Vicente, P. N. (2024). The interplay between teachers’ trust in artificial intelligence and digital competence. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12772-2
Rivera, L. de J. I., Rodríguez, M. N. C., Terbullino, G. F. M., & Crispin, F. V. S. (2024). El uso de la inteligencia artificial y su impacto en el aprendizaje de los estudiantes universitarios: Una revisión de la literatura. Revista Ibero-Americana de Estudos em Educação, 19, e18712. https://doi.org/10.21723/riaee.v19i00.1871201
Romero-Rodríguez, J.-M., Ramírez-Montoya, M.-S., Buenestado-Fernández, M., & Lara-Lara, F. (2023). Use of ChatGPT at university as a tool for complex thinking: Students’ perceived usefulness. Journal of New Approaches in Educational Research, 12(2), 323–339. https://doi.org/10.7821/naer.2023.7.1458
Sailer, M., Bauer, E., Hofmann, R., Kiesewetter, J., Glas, J., Gurevych, I., & Fischer, F. (2023). Adaptive feedback from artificial neural networks facilitates pre-service teachers’ diagnostic reasoning in simulation-based learning. Learning and Instruction, 83. https://doi.org/10.1016/j.learninstruc.2022.101620
Sanusi, I. T., Ayanwale, M. A., & Tolorunleke, A. E. (2024). Investigating pre-service teachers’ artificial intelligence perception from the perspective of planned behavior theory. Computers and Education: Artificial Intelligence, 6, 100202. https://doi.org/10.1016/j.caeai.2024.100202
Trujillo-Torres, J. M., Rodríguez-Jiménez, C., Alonso-García, S., & Berral-Ortiz, B. (2024). Revisión sistemática de la literatura sobre la seguridad digital en estudiantes de educación superior. Información Tecnológica, 35(4), 1–12. https://doi.org/10.4067/s0718-07642024000400001
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328–376. https://doi.org/10.17705/1jais.00428
Los artículos que se publican en esta revista están sujetos a los siguientes términos:
1. El Departamento de Métodos de Investigación y Diagnóstico en Educación de la Universidad de Murcia (España), junto con el Servicio de Publicaciones de la Universitdad de Murcia (Editum) son los editores de la revista REIFOP y conserva los derechos patrimoniales (copyright) de los artículos publicados, permitiendo la reutilización de las mismos bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editores y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.











