Análisis del Comportamiento Motor basado en el Análisis de Recurrencia en Adultos con Espectro Autista y Neurotípicos en una Tarea de Equilibrio Dinámico: un estudio piloto

Autores/as

DOI: https://doi.org/10.6018/cpd.478791
Palabras clave: No linealidad, Análisis de Recurrencia, Lyapunov, Trastornos del Espectro Autista, Equilibrar

Agencias de apoyo

  • Nada que declarar

Resumen

Introducción: Los trastornos del espectro autista (TEA) se refieren a una serie de trastornos del neurodesarrollo con déficits en el control postural (CP), el desarrollo motor y la coordinación. El déficit de CP parece estar muy extendido en todo el espectro y puede limitar la adquisición de nuevas habilidades motoras con graves consecuencias en la calidad de vida. Objetivos: i) verificar si las técnicas no lineales identifican el patrón de recurrencia local en el espacio de fase de la CP en individuos con TEA, ii) comparar la CP entre individuos con TEA y neuro típico, durante una tarea de equilibrio de rotación dinámica. Métodos: seis individuos adultos del sexo masculino, tres autistas y tres neuro típico, realizaron una tarea de equilibrio dinámico, donde se recolectaron datos sobre la velocidad angular del tronco. Resultados: A pesar de la ausencia de diferencias significativas, los adultos autistas mostraron, para todos los planos de movimiento, valores medios más altos para la recurrencia, la periodicidad, la estabilidad (excepto para la línea máxima en el plano transversal), la complejidad y la intermitencia; estas diferencias se confirmaron visualmente al observar los gráficos de recurrencia. Autistas también revelaron valores medios más bajos del exponente de Lyapunov, lo que significa menos divergencia y variabilidad en comparación con los neurotípicos. Conclusiones: La estrategia de control postural de los autistas basada en mayor periodicidad, estabilidad y menor divergencia y variabilidad en el control del equilibrio puede resultar de una menor plasticidad en la capacidad de adaptación a estados momentáneos de desequilibrio postural. Esta estrategia puede estar relacionada con el comportamiento estereotipado de las personas autistas con movimientos cíclicos continuos. Sin embargo, esto no da como resultado una mayor variabilidad en el movimiento, sino una menor variabilidad. Dada la dificultad neuromotora de estos adultos autistas para producir rangos de movimiento variados, se recomienda introducir actividades de equilibrio dinámico comenzando con niveles reducidos de alteración en la estabilidad postural.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Cristiana Mercê, Escuela de Deportes de Rio Maior, Instituto Politécnico de Santarém, Portugal; Biolad, CIPER, Facultad de Motricidad Humana, Portugal

Assistant Professor in Sport Science School of Rio Maior

PhD student in Human Kinetic, speciality of Motor Behavior, in Faculty Human Kinetics - University of Lisbon; Master in Physical Activity for Special Populations by Science School of Rio Maior - Polytechnic Institute of Santarém (ESDRM-IPS), graduated in 2017; Bachelor in Sports Sciences - Fitness and Health by ESDRM-IPS, graduated in 2014. Assistant Professor in ESDRM-IPS and superior exercise technique in gymnasium since 2014. Research interests in motor development, developmental coordination disorder, motor learning, learning how to cycle, motor control, balance and postural control. Member in the Interdisciplinary Center for the Study of Human Performance (Laboratory of Motor Behavior) and in Research Unit-Polytechnic Institute of Santarém - (Scientific Subarea of Applied Psychology). Best Bachelor Student Award of ESDRM, Best Master Student Award of ESDRM. E-mail: cristianamerce@esdrm.ipsantarem.pt.

Citas

Bremer, E., & Cairney, J. (2018). The Interrelationship Between Motor Coordination and Adaptive Behavior in Children With Autism Spectrum Disorder. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.02350

Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors (Basel, Switzerland), 18(3). https://doi.org/10.3390/s18030873

Casimiro, L., Rodrigues, B., Abreu, R., Gonçalves, R., Passos, R., Valagão, A., … Franco, D. (2017). Franco, D., Casimiro, L., Rodrigues, B., Abreu, R., Gonçalves, R., Passos, R. Valagão, A., Almeida, D., Cardeira, C., Martins, R., Seabra, A.P., & Catela, D. (2017). Spinning as Dynamic Balance in Kindergarten and Preschool Children: An Exploratory Study. ISBN 978-989-20-7935-6433357/17 (copy editing).

Catela, D., Seabra, A. P., Matias, B., Nunes, M., Neves, P., & Rodrigues, S. (2020). Dynamic Balance in Children With Trisomy 21: A Pilot Study. Journal of Psychology Research, 10(7). https://doi.org/10.17265/2159-5542/2020.07.005

Chen, F.-C., & Tsai, C.-L. (2016). Light finger contact concurrently reduces postural sway and enhances signal detection performance in children with developmental coordination disorder. Gait & Posture, 45, 193–197. https://doi.org/10.1016/j.gaitpost.2016.01.029

da Costa, C. S. N., Batistão, M. V., & Rocha, N. A. C. F. (2013). Quality and structure of variability in children during motor development: A systematic review. Research in Developmental Disabilities, 34(9), 2810–2830. https://doi.org/10.1016/j.ridd.2013.05.031

Deffeyes, J. E., Harbourne, R. T., Kyvelidou, A., Stuberg, W. A., & Stergiou, N. (2009). Nonlinear analysis of sitting postural sway indicates developmental delay in infants. Clinical Biomechanics (Bristol, Avon), 24(7), 564–570. https://doi.org/10.1016/j.clinbiomech.2009.05.004

Fournier, K. A., Amano, S., Radonovich, K. J., Bleser, T. M., & Hass, C. J. (2014). Decreased dynamical complexity during quiet stance in children with autism spectrum disorders. Gait & Posture, 39(1), 420–423. https://doi.org/10.1016/j.gaitpost.2013.08.016

Fournier, K. A., Kimberg, C. I., Radonovich, K. J., Tillman, M. D., Chow, J. W., Lewis, M. H., … Hass, C. J. (2010). Decreased static and dynamic postural control in children with autism spectrum disorders. Gait & Posture, 32(1), 6–9. https://doi.org/10.1016/j.gaitpost.2010.02.007

Gepner, B., Mestre, D., Masson, G., & Schonen, S. (1995). Postural effects of motion vision in young autistic children. Neuroreport, 6, 1211–1214. https://doi.org/10.1097/00001756-199505000-00034

Glazebrook, C. M., Elliott, D., & Lyons, J. (2006). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. Motor Control, 10(3), 244–264. https://doi.org/10.1123/mcj.10.3.244

Golomer, E., Crémieux, J., Dupui, P., Isableu, B., & Ohlmann, T. (1999). Visual contribution to self-induced body sway frequencies and visual perception of male professional dancers. Neuroscience Letters, 267(3), 189–192. https://doi.org/10.1016/s0304-3940(99)00356-0

Harbourne, R. T., & Stergiou, N. (2009). Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice. Physical Therapy, 89(3), 267–282. https://doi.org/10.2522/ptj.20080130

Jansiewicz, E. M., Goldberg, M. C., Newschaffer, C. J., Denckla, M. B., Landa, R., & Mostofsky, S. H. (2006). Motor signs distinguish children with high functioning autism and Asperger’s syndrome from controls. Journal of Autism and Developmental Disorders, 36(5), 613–621. https://doi.org/10.1007/s10803-006-0109-y

Kohen-Raz, R., Volkman, F. R., & Cohen, D. J. (1992). Postural control in children with autism. Journal of Autism and Developmental Disorders, 22(3), 419–432. https://doi.org/10.1007/BF01048244

Kyvelidou, A., Harbourne, R. T., Willett, S. L., & Stergiou, N. (2013). Sitting postural control in infants with typical development, motor delay, or cerebral palsy. Pediatric Physical Therapy: The Official Publication of the Section on Pediatrics of the American Physical Therapy Association, 25(1), 46–51. https://doi.org/10.1097/PEP.0b013e318277f157

Mercê, C., Branco, M., Almeida, P., Nascimento, D., Ferreira, J., & Catela, D. (2016). Recurrence Analysis in Postural Control with Children with Cerebral Paly. BMC Health Services Research, 16(Suppl 3), P72. https://doi.org/10.1186/s12913-016-1423-5

Mercê, C., Branco, M., Seabra, A. P., & Catela, D. (2018a). Postural Control in Developmental Coordination Disorder and Typical Children: A Systematic Review. Journal of Yoga, Physical Therapy and Rehabilitation, 2018(5), 1–8. https://doi.org/10.29011/2577-0756

Mercê, C., Branco, M., Seabra, A. P., & Catela, D. (2018b). Postural Control in Preschool Children with Developmental Coordination Disorder, in Sitting Position During a Functional Task. Journal of Yoga, Physical Therapy and Rehabilitation, 2018, 1–10. https://doi.org/10.29011/2577-0756. 000057

Mercê, C., Santos, C., Branco, M., & Catela, D. (2013). Recurrence Analysis of International Synchronization in Children During Tap Side of Aerobics. In Studies in Perception and Action XII: Seventeenth Internacional Conference on Perception and Action (T. Davis, P. Passos, M. Dicks&J. Weast-Knapp, pp. 33–37). New york: Psychology Press.

Minshew, N., Sung, K., Jones, B., & Furman, J. (2004). Underdevelopment of the postural control system in Autism. Neurology, 63, 2056–2061. https://doi.org/10.1212/01.WNL.0000145771.98657.62

Palmieri, F., & Fiore, U. (2009). A nonlinear, recurrence-based approach to traffic classification. Computer Networks, 53(6), 761–773. https://doi.org/10.1016/j.comnet.2008.12.015

Provost, B., Lopez, B. R., & Heimerl, S. (2007). A comparison of motor delays in young children: Autism spectrum disorder, developmental delay, and developmental concerns. Journal of Autism and Developmental Disorders, 37(2), 321–328. https://doi.org/10.1007/s10803-006-0170-6

Riley, M. A., Balasubramaniam, R., & Turvey, M. T. (1999). Recurrence quantification analysis of postural fluctuations. Gait & Posture, 9(1), 65–78.

Santos, C., Mercê, C., Branco, M., & Catela, D. (2013). Recurrence Analysis of Interjoint Coordination in Children during Voleyball Practice Taks Constrains. In Studies in Perception and Action XII: Seventeenth Internacional Conference on Perception and Action (T. Davis, P. Passos, M. Dicks&J. Weast-Knapp, pp. 134–138). New York: Psychology Press.

Speedtsberg, M. B., Christensen, S. B., Stenum, J., Kallemose, T., Bencke, J., Curtis, D. J., & Jensen, B. R. (2018). Local dynamic stability during treadmill walking can detect children with developmental coordination disorder. Gait & Posture, 59, 99–103. https://doi.org/10.1016/j.gaitpost.2017.09.035

Wallot, S., & Mønster, D. (2018). Calculation of Average Mutual Information (AMI) and False-Nearest Neighbors (FNN) for the Estimation of Embedding Parameters of Multidimensional Time Series in Matlab. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.01679

Wallot, S., Roepstorff, A., & Mønster, D. (2016). Multidimensional Recurrence Quantification Analysis (MdRQA) for the Analysis of Multidimensional Time-Series: A Software Implementation in MATLAB and Its Application to Group-Level Data in Joint Action. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01835

Webber, C., & Zbilut, P. (2005). Recurrence Quantification Analysis of Nonlinear Dynamical Systems. In Tutorials in contemporary nonlinear methods for the behavioral sciences (A. Riley, G.C. Van Order, pp. 26–96).

WHO. (2019). Autism spectrum disorders. Retrieved October 20, 2020, from https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders

Wickstrom, J., Stergiou, N., & Kyvelidou, A. (2017). Reliability of center of pressure measures for assessing the development of sitting postural control through the stages of sitting. Gait & Posture, 56, 8–13. https://doi.org/10.1016/j.gaitpost.2017.04.031

Zbilut, J. P., Thomasson, N., & Webber, C. L. (2002). Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Medical Engineering & Physics, 24(1), 53–60.

Publicado
23-09-2021
Cómo citar
Altenburg , M., Farinha, C., Santos, C., Mercê, C., Catela, D., & Branco, M. (2021). Análisis del Comportamiento Motor basado en el Análisis de Recurrencia en Adultos con Espectro Autista y Neurotípicos en una Tarea de Equilibrio Dinámico: un estudio piloto. Cuadernos de Psicología del Deporte, 21(3), 233–242. https://doi.org/10.6018/cpd.478791
Número
Sección
Psicología del Deporte