Assessment of digital learning objects in Moodle

Authors

  • Manuel Jesús Espigares Pinazo Universidad Internacional de La Rioja, España
  • José Manuel Bautista Vallejo Universidad de Huelva, España
DOI: https://doi.org/10.6018/j/350051

Abstract

This study presents the application of automated analysis processes to digital objects in online music learning, mediated through a telematic platform. Theoretically, the study is based on the application of the principles of e-learning, personalized education and implementation of automated processes for analysing educational data. Specifically, this study taps into the application of such techniques to initial test assessment, with a view to measuring levels of subject knowledge. The analysis of the information is undertaken from the data collected in a tool for making online courses, Moodle. From the analysis of these data a model, called k-means, emerges which classifies the different levels of musical knowledge. The model establishes three profiles regarding acquisition of music knowledge: high, medium and low.

Downloads

Download data is not yet available.

References

Aydin, C.C., Tirkes, G. (2010). Open Source Learning Management Systems in Distance Learning. TOJET: The Turkish Online Journal of Educational Technology, 9(2), 175-184.

Bernardo, J.B. et al. (2014). Educación personalizada: principios, técnicas y recursos. Logroño: Síntesis.

Bullock, S. (2016). Digital technologies in teacher education. From mythologies to making. In Kosnik, C.; White, S.; Beck, C.; Marshall, B.; Goodwin, A. Lin & Murray, J. (eds.), Building Bridges. Rethinking Literacy Teacher Education in a Digital Era (pp. 2-16). Rotterdam: Sense Publishers.

Calderero Hernández, J.F. et al. (2014). Una nueva aproximación al concepto de educación personalizada y su relación con las TIC. Teoría de la Educación. Educación y Cultura en la Sociedad de la Información, 15(2), 131-151.

Celebi, M.E., Kingravi, H.A. & Vela, P.A. (2013). A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1), January, 200-210.

Chiappe-Lavarde, A., Hine, N. & Martínez-Silva, J.-A. (2015). Literatura y práctica: una revisión crítica acerca de los MOOC. Comunicar, 44 (XXII), 9-18. DOI http://dx.doi.org/10.3916/C44-2015-01G

Coll, C. y Monereo, C. (2008). Psicología de la educación virtual. Madrid: Morata.

Cuthbert, A.J. (2003). Wise learning Communities. Design Considerations. In A.K. Renninger y W. Shumar (Eds.), Building Learning communities. Learning and change in cyberspace (pp. 215-246). Cambridge: Cambridge University Press.

Chan, M.E., Galeana, L. y Ramírez, M.S. (2007). Desarrollo de objetos de aprendizaje basado en patrones. Brasil: Virtual Educa.

Estadística (2016). Portal de la Universidad de Granada sobre estadística.

Recuperado el 12 de Enero de 2016 de http://wdb.ugr.es/~bioestad/guia-spss/practica-8/#2

Etscheidt, S. & Curran, C. (2012). Promoting Reflection in Teacher Preparation Programs: A Multilevel Model. Teacher Education and Special Education, 35(1), 7-26. (http://doi.org/dk 53x2).

Feldman, D., Schmidt, M. & Sohler, C. (2013). Turning big data into tiny data: constant-size coresets for k-means, PCA and projective clustering. SODA '13 Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, pp. 1434-1453.

Himonides, E & King, A. (2014). Proceedings of the Sempre MET2014: Researching Music, Education, Technology: Critical Insights. International Music Education Research Centre, iMerc. Institute of Education University of London.

Housand, B.C. y Housand, A.M. (2012). The role of technology in gifted students' motivation. Psychology in the Schools, 49(7), 706-715.

Hwang, G.J. et al. (2012). Development of a personalized educational computer game based on students’ learning styles. Educational Technology Research and Development, 60(4), August, 623-638.

Irigoien, I. y Arenas, C. (2006). Clasificación: Análisis de clusters (clustering). En B. Sierra (Coord.), Aprendizaje automático: conceptos básicos y avanzados. Aspectos prácticos utilizando el software Weka. Madrid: Pearson Prentice Hall.

Jorgensen, E. R. (2008). The art of teaching music. Indianápolis: Indiana University Press.

Kearney, M.S. & Levine, P.B. (2015). Early Childhood Education by MOOC: Lessons from Sesame Street. NBER Working, Paper No. 21229, June. (DOI: 10.3386/w21229).

Kop, R. (2011). The challenges to connectivist learning on open online networks: Learning experiences during a massive open online course. The International Review of Research in Open and Distance Learning, 12(3), 19-38.

Lin, C.F. et al. (2013). Data mining for providing a personalized learning path in creativity: An application of decision trees. Computers & Education, 68, October, 199-210.

Lin, Y. et al. (2012). An improved clustering method based on k-means. Paper presented in 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Sichuan, 29-31 May, 734-737. DOI: 10.1109/FSKD.2012.6234296.

Mairal, J. et al. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11, 19-60.

McAfee, A. et al. (2012). Big Data. The management revolution. Harvard Business Review, 90(10), 61-67.

Monedero-Moya, J.-J., Cebrián-Robles, D. y Desenne, Ph. (2015). Usabilidad y satisfacción en herramientas de anotaciones multimedia para MOOC. Comunicar, 44(XXII), 55-62. DOI: http://dx.doi.org/10.3916/C44-2015-06

Montgomery, A. et al. (2015). Blending for student engagement: Lessons learned for MOOCs and beyond. Australasian Journal of Educational Technology , 31(6), 657-670.

Moodle (2016). Modular Object-Oriented Dynamic Learning Environment. Recuperado el 10 de Febrero de 2016 de http://www.moodle.org

Pang, J., Jie, L. & Xu, F. (2014). Study on the Group Cooperative Innovation Based on WEB2.0. Journal of Software, 9(3), 613-620.

RAND Corporation (2014). Early progress: Interim research on personalized learning. Seattle, WA: The Bill and Melinda Gates Foundation.

Redding, S. (2014a). Personal Competencies in Personalized Learning. Center on Innovations in Learning, Temple University, Philadelphia, PA. http://www.centeril.org/publications/Personalized_Learning.pdf (16-05-2016).

Redding, S. (2014b). Personal Competency. A Framework for Building Students’ Capacity to Learn. Philadelphia, PA: Temple University, Center on Innovations in Learning. http://www.centeril.org/publications/Personal_Compentency_Framework.pdf (16-05-2016).

Redding, S. (2014c). The something other: Personal competencies for learning and life. Philadelphia, PA: Temple University, Center on Innovations in Learning. http://eric.ed.gov/?id=ED558074 (16-05-2016).

Rivera, Claudia (2014). Objetos de aprendizaje: una primera Mirada . Infotecarios. http://www.infotecarios.com/objetos-de-aprendizaje-una-primera-mirada/

Roberts-Mahoney, H., Means, A.J. & Garrison, M.J. (2016). Netflixing human capital development: personalized learning technology and the corporatization of K-12 education. Journal of Education Policy. DOI: http://dx.doi.org/10.1080/02680939.2015.1132774

Sadovaya, V.V.; Korshunova, O.V. & Nauruzbay, Z.Z. (2016). Personalized Education Strategies. Mathematics Education, 11(1), 199-209.

Sagitova, R.R. (2014). Training students to be autonomous learners. International Journal of Humanities Education, 12(1), 27-34.

Sandler, S. (2012). People v. ‘personalization’: Retaining the human element in the high-tech era of education. Education Week, 31(22), 20-22.

Selwyn, N. (2012). Ten suggestions for improving academic research in education and technology. Learning, Media and Technology, 37(3), 213–219.

Sharif, A., & Magrill, B. (2015). Discussion forums in MOOCs. International Journal of Learning, Teaching and Educational Research, 12(1), 119-132.

Shechtman, N. et al. (2013). Promoting grit, tenacity, and perseverance: Critical factors for success in the 21st century. Washington, DC: U.S. Department of Education, Department of Educational Technology.

Spector, J.M. (2013). Emerging Educational Technologies and Research Directions. Journal of Educational Technology & Society, 16(2), April, 21-30.

Tseng, S.-F. et al. (2016). Who will pass? Analyzing learner behaviors in MOOCs. Research and Practice in Technology Enhanced Learning, 11(8), 1-11. DOI: 10.1186/s41039-016-0033-5

Twyman, J. (2014). Competency-based Education: Supporting Personalized Learning. Philadelphia, PA: Center on Innovations in Learning. http://www.centeril.org/connect/ resources/Connect_CB_Education_Twyman-2014_11.12.pdf (16-05-2016).

Vollenbroek, W. et al. (2014). Learning Education: An ‘Educational Big Data’ approach for monitoring, steering and assessment of the process of continuous improvement of education. Paper presented in European Conference in the Applications of Enabling Technologies, 20-21 November 2014, Glasgow, Scotland.

Wolf, M. (2010). Innovate to education: System [re]design for personalized learning. A report from the 2010 symposium. Washington, DC: Software & Information Industry Association. Retrieved from http://siia.net/pli/ presentations/PerLearnPaper.pdf (16-05-2016).

Yang, S. et al. (2011). A collaborative multimedia annotation tool for enhancing knowledge sharing in CSCL. Interactive Learning Environments, 19(1), 45-62. DOI: 10.1080/10494820.2011.528881

Published
20-11-2018
How to Cite
Espigares Pinazo, M. J., & Bautista Vallejo, J. M. (2018). Assessment of digital learning objects in Moodle. Educatio Siglo XXI, 36(3 Nov-Feb1), 377–396. https://doi.org/10.6018/j/350051