The effect of a full immersive Playstation VR training program on the children’s perceptual abilities development in Volleyball

Authors

DOI: https://doi.org/10.6018/cpd.478181
Keywords: volleyball, exergame, full immersive, virtual reality, depth perception, anticipation reaction time

Abstract

This study examined the impact of two different educational interventions, a program that were based on full immersive virtual reality games (FIVE) and a typical training program (TT), in Depth Perception (DP) and Anticipation Reaction Time (ART) of forty eight female volleyball players aged 8-10 years old. The players were randomly separeted into three individual groups of 16 children each, two experimental groups (FIVE, TT) and one control group. The FIVE group attended, for 6 weeks, twice a week and 24 min per session, a full immersive program in Playstation4VR and the TT group a typical training to the court, based to improve DP and ART. The control group did not receive any structured DP and ART training program. Before the interventions, after and one –month after, DP was estimated using Electric Depth Perception Tester and ART using Bassin Anticipation Timer. Were conducted Two-Way analyses of variance with repeated measures, to demonstrate the impact of educational interventions measurements across the two movements on DP efficacy and the two speeds (5mph and 10mph) on ART performance. The post and the retention tests DP in both movements scores were remarkably greater than pre-test for FIVE and TT groups but not for the control group. Additionally, on the ART scores, it was observed that only at a speed of 10 mph did the post and retention test scores show a significant increase compared to the pre-test scores for both experimental groups, while no such increase was observed in the control group. To conclude, exergames VR and a typical training are effective tools for improving DP and ART in volleyball players aged 8-10 years –old.

Downloads

Download data is not yet available.

References

Abernethy, B., & Wood, J. (2001). Do generalized visual training programmes for sport really work? An experimental investigation. Journal of Sports Science, 19, 203–222. https://doi.org/10.1080/026404101750095376

Abernethy, B., Wood, J. M., & Parks, S. (1999) Can the anticipatory skills of experts be learned by novices? Research Quarterly for Exercise and Sport, 70, 313-318. https://doi.org/10.1080/02701367.1999.10608050

Alhadad, S.A., & Aboo, O.G. (2018). Application of Virtual Reality Technology in Sport Skill. International Journal of Academic Management Science Research, 2(12), 31-40.

Altenhoff, B. M., Napieralski, P. E., Long, L. O., Bertrand, J. W., Pagano, C. C., Babu, S. V. & Davis, T. A. (2012). Effects of calibration to visual and haptic feedback on near-field depth perception in an immersive virtual environment. Proceedings of the ACM Symposium on Applied Perception, 71-78. https://doi.org/10.1145/2338676.2338691

Amprasi, E., Vernadakis, N., Zetou, E. & Antoniou, P. (2021). Effect of a Full Immersive Virtual Reality Intervention on Whole Body Reaction Time in Children. International Journal of Latest Research in Humanities and Social Science (IJLRHSS), 4(8), 15-20.

Amprasi, E., Vernadakis, N., Zetou, E. & Antoniou, P. (2021). The impact of a Full Immersive Virtual Reality intervention on children’s reaction time. Journal of Physical Activity, Nutrition and Rehabilitation. https://www.panr.com.cy/?p=7412

Amprasi, E., Vernadakis, N., Zetou, E. & Antoniou, P. (2022). Effect of a Full Immersive Virtual Reality Intervention on Selective Attention in Children. International Journal of Instruction, 15 (1), 565-582. https://doi.org/10.29333/iji.2022.15132a

Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W. & Fimm, B. (2008). Depth perception in virtual reality: Distance estimations in peri- and extrapersonal space. Cyber Psychology & Behavior, 11(1) 9-15. http://dx.doi.org/10.1089/cpb.2007.9935

Ato, M., López-García, J. J. & Benavente, A. (2013). A classification system for research designs in psychology. Annals of Psychology, 29(3), 1038–1059. http://dx.doi.org/10.6018/analesps.29.3.178511

Barcelos, J. L., Morales, P.A., Maciel, R. N., Azevedo, M. M. A. & Silva, V. F. (2009). Time of practice: a comparative study of the motor reaction time among volleyball players. Fitness Performance Journal, 8(2), 103-109.

Belisle, J. J. (1963). Accuracy, reliability and refractoriness in a coincidence anticipation task. Research Quarterly, 34, 271- 281. https://doi.org/10.1080/10671188.1963.10613234

Benguigui, N. & Ripoll, H. (1998). Effects of tennis practice on the coincidence timing accuracy of adults and children. Research Quarterly for Exercise and Sport, 69(3), 217–223. https://doi.org/10.1080/02701367.1998.10607688

Bideau, B., Multon, F., Kulpa, R., Fradet, L., Arnaldi, B. & Delamarche, P. (2004). Using virtual reality to analyze links between handball thrower kinematics and goalkeeper’s reactions. Neuroscience Letters, 372(1–2), 119–22. https://doi.org/10.1016/j.neulet.2004.09.023

Bisson, E., Contant, B., Sveistrup, H. & Lajoie, Y. (2007). Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training. Cyber Psychology & Behavior, 10(1), 16–23. https://doi.org/10.1089/cpb.2006.9997

Brady, F. (1996). Anticipation of coincidence, gender, and sports classification. Perceptual and Motor Skills, 82, 227-239.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum.

Dina, G., Dina, L. & Popescu, G. (2013). Perceptual models in volleyball players training. Procedia - Social and Behavioral Sciences, 93, 2114-2119. https://doi.org/10.1016/j.sbspro.2013.10.175

Eaves, D. L., Breslin, G., Van Schalk, P., Robinson, E. & Spears, I. R. (2011). The short-term effects of real-time virtual reality feedback on motor learning in dance. Presence, 20, 62–77. https://doi.org/10.1162/pres_a_00035

Enríquez Molina, R., Sánchez-García, C., Reigal, R. E., Juárez-Ruiz de Mier, R., Sanz Fernández, C., Hernández-Mendo, A. & Morales-Sánchez, V. (2023). The type of physical-sports activity practised determis the level of divided attention among young adults. Sport Psychology Notebooks, 23(2), 118–132. https://doi.org/10.6018/cpd.535021

Faric, N., Potts, H.W.W., Hon, A., Smith, L., Newby, K., Steptoe, A. & Fisher, A. (2019). What players of virtual reality exercise games want: thematic analysis of web-based reviews. Journal of Medical Internet Research, 21 (9), 1-13. https://doi.org/10.2196/13833

Fontani, G., Lodi, L., Felici, A., Migliorini, S. & Corradeschi, F. (2006). Attention in athletes of high and low experience engaged in different open skill sports. Perceptual Motor Skills, 102, 791-805. https://doi.org/10.2466/pms.102.3.791-805

García, L. M., Birckhead, B. J., Krishnamurthy, P., Sackman, J., Mackey, I. G., Louis, R. G., Salmasi, V., Maddox, T. & Darnall, B. D. (2021). An 8-Week Self-Administered At-Home Behavioral Skills-Based Virtual Reality Program for Chronic Low Back Pain: Double-Blind, Randomized, Placebo-Controlled Trial Conducted During COVID-19. Journal of medical internet research, 23 (2), e26292. https://doi.org/10.2196/26292

Gunay, A. R., Ceylan, H. I., Colakogolu, F. F. & Saygin, O. (2019). Comparison of coinciding anticipation timing and reaction time performances of adolescent female volleyball players in different playing positions. The Sport Journal, 36, 1–12.

Hatzitaki, V., Zisi, V., Kollias, I. & Kioumourtzoglou, E. (2002). Perceptual-Motor Contributions to Static and Dynamic Balance Control in Children, Journal of Motor Behavior, 34 (2), 161-170. https://doi.org/10.1080/00222890209601938

Huang, C. H., Wong, M. K., Lu, J., Huang, W. F. & Teng, C. I. (2017). Can using exergames improve physical fitness? A 12-week randomized controlled trial. Computers in Human Behavior, 70, 310–316. https://doi.org/10.1016/j.chb.2016.12.086

Kioumourtzoglou, E., Kourtessis, T., Mihalopoulou, M. & Derri, V. (1998). Differences in several perceptual abilities between experts and novices in Basketball, Volleyball and Water Polo. Perceptual and Motor Skills, 86, 899-912. https://doi.org/10.2466/pms.1998.86.3.899

Kioumourtzoglou, E., Michalopoulou, M., Tzetzis, G. & Kourtessis, T. (2000). Ability profile of the elite volleyball player. Perceptual and Motor Skills, 90, 757-770. https://doi.org/10.2466/pms.2000.90.3.757

Komura, T., Kuroda, A. & Shinagawa, Y. (2002). NICEMEETVR. Proceedings of the 2002 ACM Symposium on Applied Computing. https://doi.org/10.1145/508791.509000

Larkin, P., Mesagno, C., Berry, J., Spittle, M. & Harvey, J. (2018). Video-based training to improve perceptual-cognitive decision-making performance of Australian football umpires. Journal of Sports Sciences, 36(3), 239-246. https://doi.org/10.1080/02640414.2017.1298827

Magill, R A. (1998). Motor Learning Concepts and Applications (5th ed). Boston: McGraw-Hill.

Mazzoccante, R., Corrêa, Η., Sousa, I., Ramos, I. & Melo, G. (2022). The relationship between the number of weekly physical education classes with morphological, physical, motor and executive functions profiles: a cross-sectional study Title. Cuadernos de Psicología del Deporte, 22(2), 171-185

Merino Campos, C. & del Castillo Fernández, H. (2016). The benefits of active video games for educational and physical activity approaches: a systematic review. New approaches in education research, 5(2), 115–122. https://doi.org/10.7821/naer.2016.7.164

Molstad, S. M., Love, P. A., Covington, N. K., Kluka, D. A., Baylor, K. A. & Cook, T. L. (1994). Timing of coincidence anticipation by NCAA Division I Softball athletes. Perceptual and Motor Skills, 79, 1491-1497. https://doi.org/10.2466/pms.1994.79.3f.1491

Müller Zuñiga, C., Candia-Cabrera, P., Casas-Sotomayor, F., & Carcamo-Oyarzun, J. (2022). Actual and perceived motor competence in a rural context according to gender and extracurricular sports participation. Sport Psychology Notebooks, 22(2), 268–281. https://doi.org/10.6018/cpd.482421

Nuri, L., Shadmehr, A., Ghotbi, N. & Attarbashi Moghadam, B. (2013). Reaction time and anticipatory skill of athletes in open and closed skill-dominated sport. European Journal of Sport Science, 13, 431–436. https://doi.org/10.1080/17461391.2012.738712

Nurkkala, V., Kalermo, J. & Jarvilehto, T. (2014). Development of Exergaming Simulator for Gym Training, Exercise Testing and Rehabilitation. Journal of Communication and Computer, 11, 403-411.

Oh, Y. & Yang, S. (2010). Defining exergames and exergaming. Paper presented at the Meaningful Play 2010 Conference, Michigan State University, East Lansing, MI. http://meaningfulplay.msu.edu/proceedings2010/mp2010_paper_63.pdf.

Oxendine, J. B. (1984). Visual and kinesthetic perception: psychology and motor learning (2nd ed.). Prentice Hall.

Pallavici, F., Pepe, A. & Minissi, M.E. (2019). Gaming in Virtual Reality: What Changes in Terms of Usability, Emotional Response and Sense of Presence Compared to Non-Immersive Video Games? Simulation & Gaming, 50(2), 136–159. https://doi.org/10.1177/1046878119831420

Pasco, D. (2013). The Potential of Using Virtual Reality Technology in Physical Activity Settings. Quest, 65, 429-441. https://doi.org/10.1080/00336297.2013.795906

Perrin, T., Faure, C., Nay, K., Cattozzo, G., Sorel, A., Kulpa, R. & Kerhervé, H. (2019). Virtual Reality Gaming Elevates Heart Rate but Not Energy Expenditure Compared to Conventional Exercise in Adult Males. International journal of environmental research and public health. 16 (22), 4406. https://doi.org/10.3390/ijerph16224406

Politopoulos, N. (2015). Implementation and evaluation of a game using natural user interfaces in order to improve response time. [Dissertation, Aristotle University of Thessaloniki].

Pourazar, M., Mirakhori, F., Hemayattalab, R. & Bagherzadeh, F. (2018). Use of virtual reality intervention to improve reaction time in children with cerebral palsy: A randomized controlled trial. Developmental Neurorehabolitation, 21(8), 515–520. https://doi.org/10.1080/17518423.2017.1368730.

Pratama, Y. & Pekik Irianto, D. (2018). Whole part or Mini Games, which one is the most effective training method to improve forearm passing ability in volleyball? Proceedings of the 2nd Yogyakarta International Seminar on Health, Physical Education, and Sport Science (YISHPESS 2018) and 1st Conference on Interdisciplinary Approach in Sports (CoIS 2018). https://doi.org/10.2991/yishpess-cois-18.2018.50

Reigal, R.E., Enríquez-Molina, R., Sánchez-García, C., Franquelo-Egea, M.A., Contreras-Osorio, F., Campos-Jara, C., Hernández-Mendo, A. & Morales-Sánchez, V., (2023). Efectos deuna sesión de juegos reducidos basados en balonmano sobre la atención selectiva, sostenida y amplitud atencional en una muestra de adultos jóvenes, Sport Psychology Notebooks, 23(3), 1-17. https://doi.org/10.6018/cpd.563001

Richlan, F., Weiß, M., Kastner, P. & Braid, J. (2023). Virtual training, real effects: a narrative review on sports performance enhancement through interventions in virtual reality. Frontiers in Psychology, 14:1240790. https://doi.org/10.3389/fpsyg.2023.1240790

Ripoll, H. & Latiri, I. (1997). Effect of expertise on coincident timing accuracy in a fast ball game. Journal of Sports Sciences, 15(6), 573-580, https://doi.org/10.1080/026404197367001

Rothstein, A. L. & Wughalter. E. H. (1987). Motor learning. American alliance for health, physical education, recreation, and dance. Reston, VA.

Schmidt, R. A. & Lee, T. D. (2005). Motor control and learning: A behavioral emphasis (4th ed.). Human Kinetics.

Siani, A. & Marley, S. A. (2021). Impact of the recreational use of virtual reality on physical and mental wellbeing during the Covid.19 lockdown. Health and Technology, 11, 425–435. https://doi.org/10.1007/s12553-021-00528-8.

Sinclair, J., Hingston, P. & Masek, M. (2007). Considerations for the design of exergames. Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia. https://doi.org/10.1145/1321261.1321313

Sveistrup, H. (2004). Motor rehabilitation using virtual reality. Journal of Neuro Engineering and Rehabilitation, 1(10), 1 -8. https://doi.org/10.1186/1743-0003-1-10

Westerman, S. J. & Cribbin, T., (1998). Individual differences in the use of depth cues: Implications for computer- and video-based tasks. Acta Psychologica, 99, 293-310. https://doi.org/10.1016/s0001-6918(98)00016-x

Williams, A. M., Davids, K. & Williams, J. G. (2000). Visual perception and action in sport. Routledge.

Ζetou, Ε. & Haritonidis, Κ. (2002). “Teaching Volleyball”, Volume 2, Thessaloniki, University studio press.

Published
29-04-2024
How to Cite
Amprasi, E., Vernadakis, N., Zetou, E., & Antoniou, P. (2024). The effect of a full immersive Playstation VR training program on the children’s perceptual abilities development in Volleyball. Sport Psychology Notebooks, 24(2), 145–161. https://doi.org/10.6018/cpd.478181
Issue
Section
Psicología del Deporte