Effects of a 10-week dry-land strength and conditioning program in physical capacities and start of previously federated and regular swimming practitioners

Autores/as

  • Carlos Silva Faculty of Human Kinetics, University of Lisbon, Portugal.
  • João Jesus Polytechnic Institute of Setúbal, Department of Science and Technology, Setúbal, Portugal.
  • Iuri Vilarigues Polytechnic Institute of Setúbal, Department of Science and Technology, Setúbal, Portugal.
  • Ivo Aranha Polytechnic Institute of Setúbal, Department of Science and Technology, Setúbal, Portugal.
  • Iuri Candeias Polytechnic Institute of Setúbal, Department of Science and Technology, Setúbal, Portugal.
  • Fernando Santos Quality of Life Research Centre (CIEQV), Rio Maior, Santarém, Portugal.
  • Teresa Figueiredo Quality of Life Research Centre (CIEQV), Rio Maior, Santarém, Portugal.
  • Mário Espada
DOI: https://doi.org/10.6018/cpd.468821
Palabras clave: Entrenamiento, fuerza explosiva, flexibilidad cognitiva, Cinemática, Rendimiento

Agencias de apoyo

  • Fernando Santos, Mário Espada and Teresa Figueiredo acknowledge the Foundation for Science and Technology, I.P., Grant/Award Number UIDP/04748/2020.

Resumen

The aim of this study was to evaluate the effects of a 10-week strength and conditioning (S&C) program in physical capacities and start in previously federated and regular swimming practitioners. 16 swimmers (9 male, 17.00±2.16 years of age, 179.14±5.76 cm of height and 69.79±3.11 kg of weight; 7 female, 15.86±2.34 years of age, 163.86±4.98 cm of height and 60.19±3.60 kg of weigh) were equality, but randomly separated in two groups (control group and experimental group, CG and EG, respectively). In the pre-test, swimmers performed three starts in two different models, grab start and track start, the best start was registered. Kinematic parameters of the swimming start and time at 15 m were determined. Flexibility, countermovement jump and 3 kg medicine ball throw were also assessed. In post-test, 10-weeks after a regular 2-sessions week specific dry-land S&C program of 60 min was performed by the EG, all tests were repeated. Flexibility, strength and muscular power gains were significant in EG, contrarily to CG. Swimming start flight phase variables improved more in EG compared to CG, with specificities observed in grab and track start but not a linear consequence with performance in 15-m mark in both groups. A 10-week dry-land S&C program can provide benefits in physical capacities in regular swimming practitioners, fact that may improve the initial phase of the swimming start, prior to the underwater moment, which should deserve attention by the coaches in daily training aiming performance enhancement at 15 m.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amaro, N. M., Marinho, D. A., Marques, M. C., Batalha, N. P., & Morouço, P. G. (2017). Effects of dry-land strength and conditioning programs in age group swimmers. Journal of Strength and Conditioning Research, 31(9), 2447-2454. https://doi.org/10.1519/JSC.0000000000001709.

Asadi, A., Arazi, H., Young, W. B., & Saez de Villarreal, E. (2016). The effects of plyometric training on change-of-direction ability: a meta-analysis. International Journal of Sports Physiology and Performance, 11, 563e573. https://doi.org/10.1123/ijspp.2015-0694.

Aspenes, S., Kjendlie, P. L., Hoff, J., & Helgerud, J. (2009). Combined strength and endurance training in competitive swimmers. Journal of Sports Science and Medicine, 8, 357-65.

Benjanuvatra, N., Edmunds, K., & Blanksby B. (2007). Jumping abilities and swimming grab-start performance in elite and recreational swimmers. International Journal of Aquatic Research and Education, 1(3), 231-41. https://doi.org/10.25035/ijare.01.03.06.

Berryman, N., Mujika, I., Arvisais, D., Roubeix, M., Binet, C., & Bosquet, L. (2018). Strength training for middle- and long-distance performance: A meta-analysis. International Journal of Sports Physiology and Performance, 13, 57-63. https://doi.org/ 10.1123/ijspp.2017-0032.

Bishop, D. C., Smith, R. J., Smith, M. F., & Rigby, H. E. (2009). Effect of plyometric training on swimming block start performance in adolescents. Journal of Strength and Conditioning Research, 23, 2137-2143. https://doi.org/10.1519/JSC.0b013e3181b866d0.

Breed, R. V. P., & Young, W. B. (2003). The effect of a resistance training programme on the grab, track and swing starts in swimming. Journal of Sports Sciences, 21, 213-220. https://doi.org/10.1080/0264041031000071047.

Counsilman, J., Counsilman, B., Nomura, T. & Endo, M. (1988) Three types of grab Starts for competitive swimming. In: Biomechanics and Medicine in Swimming V. Eds: Ungerechts, B., Wilke, K. and Reischle, K. Champaign, Illinois: Human Kinetics Books. 81-91.

Costa, M. J., Marinho, D. A., Santos, C. C., Quinta-Nova, L, Costa A. M., Silva A. J., & Barbosa T. M. (2021). The coaches’ perceptions and experience implementing a long-term athletic development model in competitive swimming. Frontiers in Psychology, 12, 1626. https://doi.org/10.3389/fpsyg.2021.685584.

de Jesus, K., Figueiredo, P., Gonçalves, P., Pereira, S., Vilas-Boas, J. & Fernandes, R. (2011) Biomechanical analysis of backstroke swimming starts. International Journal of Sports Medicine, 32, 546-551. https://doi.org/10.1055/s-0031-1273688.

de Villarreal, E. S., Suarez-Arrones, L., Requena, B., Haff, G. G., & Ramos Veliz, R. (2015). Enhancing performance in professional water polo players: dryland training, in-water training, and combined training. Journal of Strength and Conditioning Research, 29(4), 1089e1097. https://doi.org/10.1519/JSC.0000000000000707.

Espada, M. C., Costa, M. J., Costa, A. M., Silva, A. J., Barbosa, T. M., Pereira, A. F. (2016). Relationship between performance, dry-land power and kinematics in master swimmers. Acta Bioeng Biomech, 18(2), 145-51. https://doi.org/10.5277/ABB-00223-2014-02.

Fédération Internationale de Natation (FINA) swimming rules sw 5.3, sw 6.3, and sw 8.5. 2018. http:// www.fina.org/content/fina-rules. Accessed 12 Sep 2020.

Formicola, D. & Rainoldi, A. (2015). A kinematic analysis to evaluate the start techniques' efficacy in swimming. Sport Sciences for Health, 11, 57-66. https://doi.org/10.1007/s11332-014 0207-8.

Garcia-Hermoso, A., Escalante, Y., Arellano, R., Navarro, F., Dominguez, A. M., & Saavedra, J. M. (2013). Relationship between final performance and block times with the traditional and the new starting platforms with a back plate in international swimming championship 50 m and 100-m freestyle events. Journal of Sports Science and Medicine, 12, 698-706.

Garcia-Ramos, A., Stirn, I., Padial, P., Arguelles-Cienfuegos, J., De la Fuente, B., Calderon, C., Bonitch-Góngora, J., Tomazin, K., Strumbelj, B., Strojnik, V., & Feriche, B. (2016). The effect of an altitude training camp on swimming start time and loaded squat jump performance. PLoS One, 11(7), e0160401. https://doi.org/10.1371/journal.pone.0160401.

Guillén García, F., Álvarez Malé, M. L., García Arencibia, S., & Dieppa León, M. (2007). Motivos de participación deportiva en natación competitiva en niños y Jovenes. Cuadernos de Psicología del Deporte, 7(2), 59-74.

Guimaraes, A. & Hay, J. (1985) A mechanical analysis of the grab starting technique in swimming. International Journal of Sport Biomechanics, 1, 25-35.

Harriss, D. J., MacSween, A., & Atkinson, G. (2019). Ethical standards in sport and exercise science research: 2020 Update. International Journal of Sports Medicine, 40(13), 813-817. https://doi.org/10.1055/a-1015-3123.

Hay J. (1988) The status of research on the biomechanics of swimming.: Biomechanics and Medicine in Swimming V. Ungerechts B.E., Wilke K., Reischle K. Champaign, Ill: Human Kinetics Books; 3-14.

Houel, N., Elipot, M., André, F. & Hellard, P. (2013) Influence of angles of attack, frequency and kick amplitude on swimmer’s horizontal velocity during underwater phase of a grab start. Journal of Applied Biomechanics, 29(1), 49-54. https://doi.org/10.1123/jab.29.1.49.

Hutchinson, J. C., Zenko, Z., Santich, S., Dalton, P. C. (2020). Increasing the pleasure and enjoyment of exercise: A novel resistance-training protocol. Journal of Sport & Exercise Psychology, 9, 1-10. https://doi.org/10.1123/jsep.2019-0089.

Karpiński, J., Rejdych, W., Brzozowska, D., Gołaś, A., Sadowski, W., Swinarew, A. S., Stachura, A., Gupta, S., & Stanula, A. (2020). The effects of a 6-week core exercises on swimming performance of national level swimmers. PloS One, 15(8), e0227394. https://doi.org/10.1371/journal.pone.0227394.

Keiner, M., Wirth, K., Fuhrmann, S., Kunz, M., Hartmann, H., & Haff, G. G. (2019). The influence of upper- and lower-body maximum strength on swim block start, turn, and overall swim performance in sprint swimming. Journal of Strength and Conditioning Research, Aug 15. https://doi.org/10.1519/JSC.0000000000003229.

Larson, H. K., Young, B. W., McHugh, T. F., & Rodgers, W. M. (2019). Markers of early specialization and their relationships with burnout and dropout in swimming. Journal of Sport & Exercise Psychology, 1, 41(1), 46-54. https://doi.org/10.1123/jsep.2018-0305.

Lucas, D., Neiva, H., Marinho, D., Ferraz, R., Rolo, I., & Duarte-Mendes, P. (2021). Functional Movement Screen® evaluation: comparison between elite and non-elite young swimmers: FMS® and performance in swimming. Cuadernos de Psicología del Deporte, 21(2), 163-173. https://doi.org/10.6018/cpd.438401.

Maglischo, E.W. (2003) Swimming Fastest. Champaign Ill.: Human Kinetics.

Marinho, D. A., Barbosa, T. M., Neiva, H. P., Silva, A. J., & Morais, J. E. (2020). Comparison of the start, turn and finish performance of elite swimmers in 100 m and 200 m races. Journal of Sports Science and Medicine, 19(2), 397-407.

Martín-Moya, R., Jesús Ruiz-Montero, P., Rivera García, E., & Leeson, G. (2020). Psychological and environmental factors for older adults to exercise: A systematic review. Revista De Psicología Del Deporte (Journal of Sport Psychology), 29(2), 93-104.

McMahon, J., Rej, S., & Comfort, P. (2017). Sex differences in countermovement jump phase characteristics. Sports, 5, 8. doi:10.3390/sports5010008.

Mitchell, L. J. G., Rattray, B., Saunders, P. U., & Pyne, D. B. (2018). The relationship between talent identification testing parameters and performance in elite junior swimmers. Journal of Science and Medicine in Sport, 21(12), 1281e1285. https://doi.org/10.1016/j.jsams.2018.05.006.

Morais, J. E., Marinho, D. A., Arellano, R., & Barbosa, T. M. (2018) Start and turn performances of elite sprinters at the 2016 European Championships in swimming. Sports Biomechanics, 18(1), 100-114. https://doi.org/10.1080/14763141.2018.1435713.

Moral-Campillo, L., Reigal-Garrido, R. E., & Hernández-Mendo, A. (2020). Physical activity, cognitive and psychosocial functioning in a preadolescent sample. Revista De Psicología Del Deporte (Journal of Sport Psychology), 29(1), 123-132.

Ouyang, Y., Wang K., Zhang, T., Peng, L., Song, G., & Luo, J. (2020). The relationship between physical exercise and subjective well-being in college students: The mediating effect of body image and self-esteem. Frontiers in Psychology, 10, 3039. https://doi.org/ 10.3389/fpsyg.2019.03039.

Peterson Silveira, R., Stergiou, P., Figueiredo, P, Castro F. S., Katz, L., & Stefanyshyn, D. J. (2018). Key determinants of time to 5 m in different ventral swimming start techniques. European Journal of Sport Science, 18: 1317-1326. https://doi.org/10.1080/17461391.2018.1486460.

Potdevin, F. J., Alberty, M. E., Chevutschi, A., Pelayo, P., & Sidney, M. C. (2011). Effects of a 6-week plyometric training program on performances in pubescent swimmers. Journal of Strength and Conditioning Research, 25(1), 80e86. https://doi.org/10.1519/ JSC.0b013e3181fef720.

Ramirez-Campillo, R., Álvarez, C., García-Hermoso, A., Ramírez-Vélez, R., Gentil, P., Asadi, A., Chaabene, H., Moran, J., Meylan, C., García-de-Alcaraz, A., Sanchez-Sanchez, J., Nakamura, F. Y., Granacher, U., Kraemer, W., & Izquierdo, M. (2018). Methodological characteristics and future directions for plyometric jump training research: a scoping review. Sports Medicine, 48, 1059e1081. https://doi.org/10.1007/s40279-018-0870-z.

Ramirez-Campillo, R., Moran, J., Chaabene, H., Granacher, U., Behm, D. G., García-Hermoso, A., & Izquierdo, M. (2020). Methodological characteristics and future directions for plyometric jump training research: a scoping review update. Scandinavian Journal of Medicine and Science in Sports, 30(6), 983e997. https://doi.org/10.1111/sms.13633.

Rebutini, V. Z., Pereira, G., Bohrer, R., Ugrinowitsch, C., & Rodacki, A. L. (2014). Plyometric long jump training with progressive loading improves kinetic and kinematic swimming start parameters. Journal of Strength and Conditioning Research, 30(9), 2392-8. https://doi.org/10.1519/JSC.0000000000000360.

Rejman, M., Bilewski, M., Szczepan, S., Klarowicz, A., Rudnik, D., & Maćkała, K. (2017). Assessing the impact of a targeted plyometric training on changes in selected kinematic parameters of the swimming start. Acta of Bioengineering and Biomechanics, 19, 149-160. https://doi.org/0.5277/ABB-00627-2016-03.

Ronnestad, B. R., Hansen, E. A., & Raastad, T. (2011). Strength training improves 5-min all-out performance following 185 min of cycling. Scandinavian Journal of Medicine and Science in Sports, 21, 250-259. https://doi.org/10.1111/j.1600-0838.2009.01035.x.

Ruschel, C., Araujo, L. G., Pereira, S. M., & Roesler, H. (2007). Kinematical analysis of the swimming start: Block, flight and underwater phases. XXV ISBS Symposium. pp. 385-388.

Sammoud, S., Negra, Y., Chaabene, H., Bouguezzi, R., Moran, J., & Granacher, U. (2019). The effects of plyometric jump training on jumping and swimming performances in prepubertal male swimmers. Journal of Sports Science and Medicine, 19(4), 805e811, 18.

Sammoud, S., Negra, Y., Bouguezzi, R., Hachana, Y., Granacher, U., & Chaabene, H. (2021). The effects of plyometric jump training on jump and sport-specific performances in prepubertal female swimmers. Journal of Exercise Science and Fitness, 19(1), 25-31. https://doi.org/10.1016/j.jesf.2020.07.003.

Suchomel, T. J., Nimphius, S., Bellon, C. R., & Stone, M. H. (2018). The importance of muscular strength: training considerations. Sports Medicine, 48, 765-785. https://doi.org/ 10.1007/s40279-018 0862-z.

Slawson, S. E., Conway, P. P., Cossor, J. M., Chakravorti, N., & West, A. A. (2013). The categorization of swimming start performance with reference to force generation on the main block and footrest components of the Omega OSB11 start blocks. Journal of Sports Sciences, 31, 468-478. https://doi.org/10.1080/02640414.2012.736631.

Takeda, T., Sakai, S., Takagi, H., Okuno, K., & Tsubakimoto, S. (2017). Contribution of hand and foot force to take-off velocity for the kick-start in competitive swimming. Journal of Sports Sciences, 35, 565-571. https://doi.org/10.1080/02640414.2016.1180417.

Thng, S., Pearson, S., & Keogh, J. W. L. (2019). Relationships between dry-land resistance training and swim start performance and effects of such training on the swim start: A systematic review. Sports Medicine, 49(12), 1957-1973. https://doi.org/10.1007/s40279-019-01174-x. Erratum in: Sports Medicine. 2019 Oct 3; PMID: 31493205.

Tonnessen, E., Haugen, T., & Shalfawi, A. I. (2013) Reaction time aspects of elite sprinters in athletic world championships. Journal of Strength and Conditioning Research, 27(4), 885-892. https://doi.org/10.1519/JSC.0b013e31826520c3.

Tor, E., Pease, D. L., Ball, K. A., & Hopkins, W. G. (2014). Monitoring the effect of race-analysis parameters on performance in elite swimmers. International Journal of Sports Physiology and Performance, 9(4), 633-636. https://doi.org/10.1123/ijspp.2013-0205.

Tor, E., Pease, D. L., & Ball, K. A. (2015). Key parameters of the swimming start and their relationship to start performance. Journal of Sports Sciences, 33, 1313-1321. https://doi.org/10.1080/02640414.2014.990486.

Torrejon, A., Balsalobre-Fernandez, C., Haff, G. G., & Garcia-Ramos, A. (2019). The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports Biomechanics, 18, 245-255. https://doi.org/10.1080/14763141.2018.1433872.

van Dijk, M. P., Beek, P. J., & van Soest, A. (2020). Predicting dive start performance from kinematic variables at water entry in (sub-)elite swimmers. PloS One, 15(10), e0241345. https://doi.org/10.1371/journal.pone.0241345.

Veiga, S. & Roig, A. (2017). Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers. Sports Biomechanics, 16, 34-44. https://doi.org/10.1080/14763141.2016.1179782.

Welcher, R. L., Hinrichs, R. N., & George, T. R. (2008). Front- or rear-weighted track start or grab start: which is the best for female swimmers? Sports Biomechanics, 7(1), 100-13. https://doi.org/10.1080/14763140701683247.

West, D. J., Owen, N. J, Cunningham, D. J., Cook, C. J., & Kilduff, L. P. (2011). Strength and power predictors of swimming starts in international sprint swimmers. Journal of Strength and Conditioning Research, 25(4), 950-5. https://doi.org/10.1519/JSC.0b013e3181c8656f.

Publicado
03-01-2022 — Actualizado el 03-01-2022
Versiones
Cómo citar
Silva, C., Jesus, J., Vilarigues, I. ., Aranha, I., Candeias, I., Santos, F., … Espada, M. (2022). Effects of a 10-week dry-land strength and conditioning program in physical capacities and start of previously federated and regular swimming practitioners. Cuadernos de Psicología del Deporte, 22(1), 230–244. https://doi.org/10.6018/cpd.468821
Número
Sección
Ciencias del Deporte

Artículos más leídos del mismo autor/a