COMPRENSIÓN DE LOS IMPACTOS Y LAS MOTIVACIONES DE LAS RESEÑAS DUPLICADAS EN TRIPADVISOR

Autores/as

DOI: https://doi.org/10.6018/turismo.593611
Palabras clave: sesgo; observaciones duplicadas; eWOM; Reseñas en línea; Turismo; CGU

Resumen

TripAdvisor es una plataforma de reseñas, donde los usuarios publican reseñas para el mismo lugar, incluidas las reseñas duplicadas. Esta duplicación puede sesgar los resultados de la investigación y las percepciones de los visitantes. Para abordar este problema, analizamos las reseñas de TripAdvisor en 3 idiomas de 20 atracciones en 2 ciudades declaradas Patrimonio de la Humanidad por la UNESCO. Identificamos 3 tipos de motivaciones para las revisiones múltiples: cuestiones hedónicas, utilitarias y editoriales. Nuestro estudio recomienda que las plataformas de revisión en línea implementen estrategias para mitigar esto y asesora a los investigadores sobre cómo superar las revisiones duplicadas en su investigación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ANTONIO, N., ALMEIDA, A. DE, NUNES, L., BATISTA, F. and RIBEIRO, R. (2018a): «Hotel online reviews: Different languages, different opinions», Information Technology and Tourism, vol. 18 (1-4), pp. 157-185. https://doi.org/10.1007/s40558-018-0107-x

ANTONIO, N., ALMEIDA, A. DE, NUNES, L., BATISTA, F. and RIBEIRO, R. (2018b): «Hotel online reviews: Creating a multi-source aggregated index», International Journal of Contemporary Hospitality Management, vol. 30 (12), pp. 3574-3591. https://doi.org/10.1108/IJCHM-05-2017-0302

ANTONIO, N., CORREIA, M. B. and RIBEIRO, F.P. (2020): «Exploring User-Generated Content for Improving Destination Knowledge: The Case of Two World Heritage Cities», Sustainability, vol. 12 (22), 9654. https://doi.org/10.3390/su12229654

BANERJEE, S. and CHUA, A.Y.K. (2021): «Calling out fake online reviews through robust epistemic belief», Information and Management, vol. 58 (3), 103445. https://doi.org/10.1016/j.im.2021.103445

BEN KHALIFA, M., ELOUEDI, Z. and LEFÈVRE, E. (2020): «Multiple Criteria Fake Reviews Detection Using Belief Function Theory», In A. ABRAHAM, A. K. CHERUKURI, P. MELIN and N. GANDHI (Eds.), Intelligent Systems Design and Applications (pp. 315-324), Springer International Publishing. https://doi.org/10.1007/978-3-030-16657-1_29

BERK, R. A. and FREEMAN, D.A. (2009): «Statistical assumptions as empirical commitments», In D. COLLIER, J.S. SEKHON and P.B. STARK (Eds.), Statistical Models and Causal Inference: A Dialogue with the Social Sciences, Cambridge University Press. https://doi.org/10.1017/CBO9780511815874

CANTALLOPS, A.S. and SALVI, F. (2014): «New consumer behavior: A review of research on eWOM and hotels», International Journal of Hospitality Management, vol. 36, pp. 41-51. https://doi.org/10.1016/j.ijhm.2013.08.007

CHATTERJEE, S., GOYAL, D., PRAKASH, A. and SHARMA, J. (2021): «Exploring healthcare/health-product ecommerce satisfaction: A text mining and machine learning application», Journal of Business Research, no. 131, pp. 815-825. https://doi.org/10.1016/j.jbusres.2020.10.043

CHEN, C.-C. and SCHWARTZ, Z. (2010): «The Impact of hedonic and utilitarian motivations on the hotel customers’ risk perception», Emerging Issues and Trends in Hospitality and Tourism Research, Paper 5. http://digitalscholarship.unlv.edu/hhrc/2010/june2010/5/

CHEN, L., LI, W., CHEN, H. and GENG, S. (2019): «Detection of Fake Reviews: Analysis of Sellers’ Manipulation Behavior», Sustainability, vol. 11 (17), 4802. https://doi.org/10.3390/su11174802

CHEN, Y.-F. and LAW, R. (2016): «A review of research on electronic word-of-mouth in hospitality and tourism management», International Journal of Hospitality and Tourism Administration, vol. 17 (4), pp. 347-372. https://doi.org/10.1080/15256480.2016.1226150

CHOI, S., MATTILA, A. S., VAN HOOF, H. B. and QUADRI-FELITTI, D. (2017): «The Role of Power and Incentives in Inducing Fake Reviews in the Tourism Industry», Journal of Travel Research, vol. 56 (8), pp. 975-987. https://doi.org/10.1177/0047287516677168

DÍAZ, M.R. and RODRÍGUEZ, T.F.E. (2018): «Determining the reliability and validity of online reputation databases for lodging: Booking.com, TripAdvisor, and Holiday Check», Journal of Vacation Marketing, vol. 24 (3), pp. 261-274. https://doi.org/10.1177/1356766717706103

DUNHAM, K, and MELNICK, J. (2009): «Malicious bots: An Inside look into the cyber-criminal underground of the internet», CRC Press.

FESTINGER, L. (1954): «A theory of social comparison processes», Human Relations, vol. 7 (2), pp. 117-140.

FILIERI, R., ALGUEZAUI, S. and MCLEAY, F. (2015): «Why do travelers trust TripAdvisor? Antecedents of trust towards consumer-generated media and its influence on recommendation adoption and word of mouth», Tourism Management, vol. 51, pp. 174-185. https://doi.org/10.1016/j.tourman.2015.05.007

GOFFMAN, E. (1959): The presentation of self in everyday life, Doubleday.

GÖSSLING, S., HALL, C.M. and ANDERSSON, A.-C. (2018): «The manager’s dilemma: A conceptualization of online review manipulation strategies», Current Issues in Tourism, vol. 21 (5), pp. 484-503. https://doi.org/10.1080/13683500.2015.1127337

HEYDARI, A., TAVAKOLI, M. ALI, SALIM, N. and HEYDARI, Z. (2015): «Detection of review spam: A survey», Expert Systems with Applications, vol. 42 (7), pp. 3634-3642. https://doi.org/10.1016/j.eswa.2014.12.029

KAC, M. (1959): «Statistical independence in probability, analysis and number theory», The Mathematical Association of America.

KRUSKAL, W. (1988): «Miracles and statistics: The casual assumption of independence», Journal of the American Statistical Association, vol. 83 (404), pp. 929-940. https://doi.org/10.1080/01621459.1988.10478682

KURIAKOSE, N. and ROBBINS, M. (2016): «Don’t get duped: Fraud through duplication in public opinion surveys», Statistical Journal of the IAOS, vol. 32 (3), pp. 283-291. https://doi.org/10.3233/SJI-160978

KWOK, L., XIE, K.L. and RICHARDS, T. (2017): «Thematic framework of online review research: A systematic analysis of contemporary literature on seven major hospitality and tourism journals», International Journal of Contemporary Hospitality Management, vol. 29 (1), pp. 307-354. https://doi.org/10.1108/IJCHM-11-2015-0664

LAU, R.Y.K., LIAO, S.Y., KWOK, R.C.-W., XU, K., XIA, Y. and LI, Y. (2011): «Text mining and probabilistic language modelling for online review spam detection», ACM Transactions on Management Information Systems, vol. 2 (4), pp. 1-30. https://doi.org/10.1145/2070710.2070716

LI, H., MENG, F. and HUDSON, S. (2023): «Are Hotel Guests Altruistic? How Positive Review Disconfirmation Affects Consumers’ Online Review Behavior», Journal of Hospitality and Tourism Research, 47(3), 528-548. https://doi.org/10.1177/10963480211030313

LI, J., OTT, M., CARDIE, C. and HOVY, E. (2014): «Towards a general rule for identifying deceptive opinion spam», In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers), pp.1566-1576, Baltimore, Maryland. Association for Computational Linguistics.

LI, L., LEE, K. Y., LEE, M. and YANG, S.-B. (2020): «Unveiling the cloak of deviance: Linguistic cues for psychological processes in fake online reviews», International Journal of Hospitality Management, vol. 87, 102468. https://doi.org/10.1016/j.ijhm.2020.102468

LIN, Y., ZHU, T., WANG, X., ZHANG, J. and ZHOU, A. (2014): «Towards online review spam detection», In Proceedings of the 23rd International Conference on World Wide Web - WWW ’14 Companion, pp. 341-342. https://doi.org/10.1145/2567948.2577293

MAYZLIN, D., DOVER, Y. and CHEVALIER, J. (2014): «Promotional Reviews: An Empirical Investigation of Online Review Manipulation», American Economic Review, vol. 104 (8), pp. 2421-2455. https://doi.org/10.1257/aer.104.8.2421

OLIVEIRA, A.S., RENDA, A.I., CORREIA, M.B. and ANTONIO, N. (2022): «Hotel customer segmentation and sentiment analysis through online reviews: an analysis of selected European markets», Tourism and Management Studies, vol. 18 (1), pp. 29-40. https://doi.org/10.18089/tms.2022.180103

OLIVER, R.L. (1980): «A cognitive model of the antecedents and consequences of satisfaction decisions», Journal of Marketing Research, vol. 17 (4), pp. 460-469.

PETRESCU, M., O’LEARY, K., GOLDRING, D. and BEN MRAD, S. (2018): «Incentivized reviews: Promising the moon for a few stars», Journal of Retailing and Consumer Services, vol. 41, pp. 288-295. https://doi.org/10.1016/j.jretconser.2017.04.005

PYLE, M.A., SMITH, A.N. and CHEVTCHOUK, Y. (2021): «In eWOM we trust: Using naïve theories to understand consumer trust in a complex eWOM marketspace», Journal of Business Research, vol. 122, pp. 145-158. https://doi.org/10.1016/j.jbusres.2020.08.063

R CORE TEAM. (2016): «R: A language and environment for statistical computing», R Foundation for Statistical Computing. https://www.R-project.org/

ROSS, L. (1977): The Intuitive Psychologist and His Shortcomings: Distortions in the Attribution Process. In L. BERKOWITZ (Ed.), Advances in Experimental Social Psychology (pp. 173-220). New York: Academic Press.

RYAN, R. M. and DECI, E. L. (2000): «Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being», American Psychologist, vol. 55 (1), pp. 68-78.

SALEHI-ESFAHANI, S. and OZTURK, A. B. (2018): «Negative reviews: Formation, spread, and halt of opportunistic behaviour», International Journal of Hospitality Management, vol. 74, pp. 138-146. https://doi.org/10.1016/j.ijhm.2018.06.022

SARRACINO, F. and MIKUCKA, M. (2017): «Bias and efficiency loss in regression estimates due to duplicated observations: A Monte Carlo simulation», Survey Research Methods, vol. 11 (1). https://doi.org/10.18148/srm/2017.v11i1.7149

TAJFEL, H. and TURNER, J. C. (1979): «An integrative theory of intergroup conflict», In W. G. Austin and S. Worchel (Eds.), The social psychology of intergroup relations (pp. 33-47). Brooks/Cole.

THAKUR, R., HALE, D. and SUMMEY, J. H. (2018): «What Motivates Consumers to Partake in Cyber Shilling?», Journal of Marketing Theory and Practice, vol. 26 (1-2), pp. 181-195. https://doi.org/10.1080/10696679.2017.1389236

TRIPADVISOR. (n.d.-a): «How often can I write a review?», TripAdvisor Help Center. Retrieved August 16, 2022, from http://www.tripadvisorsupport.com/hc/en-us/articles/200614897-How-often-can-I-write-a-review-

TRIPADVISOR. (n.d.-b): «Why isn’t my review posted yet?», TripAdvisor Help Center. Retrieved August 16, 2022, from http://www.tripadvisorsupport.com/hc/en-us/articles/200614817-Why-isn-t-my-review-posted-yet-

TRIPADVISOR. (2017, September 11): «All about your TripAdvisor bubble rating», TripAdvisor. https://www.tripadvisor.com/TripAdvisorInsights/w810

VELICIA-MARTIN, F., FOLGADO-FERNANDEZ, J.A., PALOS-SANCHEZ, P. and LOPEZ-CATALAN, B. (2022): «MWOM business strategies: Factors affecting recommendations», Journal of Computer Information Systems, 2041504. https://doi.org/10.1080/08874417.2022.2041504

WALTHER M., JAKOBI T., WATSON S.J. and STEVENS G. (2023): «A systematic literature review about the consumers’ side of fake review detection - Which cues do consumers use to determine the veracity of online user reviews?», Computers in Human Behavior Reports, vol. 10. https://doi.org/10.1016/j.chbr.2023.100278

WICKHAM, H., FRANÇOIS, R., HENRY, L. and MÜLLER, K. (2018): «dplyr: A grammar of data manipulation (R package version 0.7.8)». https://CRAN.R-project.org/package=dplyr

Publicado
22-12-2023
Cómo citar
António, N., Correia, M. B., & Perdigão Ribeiro , F. (2023). COMPRENSIÓN DE LOS IMPACTOS Y LAS MOTIVACIONES DE LAS RESEÑAS DUPLICADAS EN TRIPADVISOR. Cuadernos de Turismo, (52), 219–238. https://doi.org/10.6018/turismo.593611
Número
Sección
Artículos