COMPRENSIÓN DE LOS IMPACTOS Y LAS MOTIVACIONES DE LAS RESEÑAS DUPLICADAS EN TRIPADVISOR

Autores/as

DOI: https://doi.org/10.6018/turismo.593611
Palabras clave: sesgo; observaciones duplicadas; eWOM; Reseñas en línea; Turismo; CGU

Resumen

TripAdvisor es una plataforma de reseñas, donde los usuarios publican reseñas para el mismo lugar, incluidas las reseñas duplicadas. Esta duplicación puede sesgar los resultados de la investigación y las percepciones de los visitantes. Para abordar este problema, analizamos las reseñas de TripAdvisor en 3 idiomas de 20 atracciones en 2 ciudades declaradas Patrimonio de la Humanidad por la UNESCO. Identificamos 3 tipos de motivaciones para las revisiones múltiples: cuestiones hedónicas, utilitarias y editoriales. Nuestro estudio recomienda que las plataformas de revisión en línea implementen estrategias para mitigar esto y asesora a los investigadores sobre cómo superar las revisiones duplicadas en su investigación.

Descargas

Los datos de descargas todavía no están disponibles.
Metrics
Vistas/Descargas
  • Resumen
    462
  • PDF INGLÉS
    751
  • PDF ESPAÑOL
    751

Citas

ANTONIO, N., ALMEIDA, A. DE, NUNES, L., BATISTA, F. and RIBEIRO, R. (2018a): «Hotel online reviews: Different languages, different opinions», Information Technology and Tourism, vol. 18 (1-4), pp. 157-185. https://doi.org/10.1007/s40558-018-0107-x

ANTONIO, N., ALMEIDA, A. DE, NUNES, L., BATISTA, F. and RIBEIRO, R. (2018b): «Hotel online reviews: Creating a multi-source aggregated index», International Journal of Contemporary Hospitality Management, vol. 30 (12), pp. 3574-3591. https://doi.org/10.1108/IJCHM-05-2017-0302

ANTONIO, N., CORREIA, M. B. and RIBEIRO, F.P. (2020): «Exploring User-Generated Content for Improving Destination Knowledge: The Case of Two World Heritage Cities», Sustainability, vol. 12 (22), 9654. https://doi.org/10.3390/su12229654

BANERJEE, S. and CHUA, A.Y.K. (2021): «Calling out fake online reviews through robust epistemic belief», Information and Management, vol. 58 (3), 103445. https://doi.org/10.1016/j.im.2021.103445

BEN KHALIFA, M., ELOUEDI, Z. and LEFÈVRE, E. (2020): «Multiple Criteria Fake Reviews Detection Using Belief Function Theory», In A. ABRAHAM, A. K. CHERUKURI, P. MELIN and N. GANDHI (Eds.), Intelligent Systems Design and Applications (pp. 315-324), Springer International Publishing. https://doi.org/10.1007/978-3-030-16657-1_29

BERK, R. A. and FREEMAN, D.A. (2009): «Statistical assumptions as empirical commitments», In D. COLLIER, J.S. SEKHON and P.B. STARK (Eds.), Statistical Models and Causal Inference: A Dialogue with the Social Sciences, Cambridge University Press. https://doi.org/10.1017/CBO9780511815874

CANTALLOPS, A.S. and SALVI, F. (2014): «New consumer behavior: A review of research on eWOM and hotels», International Journal of Hospitality Management, vol. 36, pp. 41-51. https://doi.org/10.1016/j.ijhm.2013.08.007

CHATTERJEE, S., GOYAL, D., PRAKASH, A. and SHARMA, J. (2021): «Exploring healthcare/health-product ecommerce satisfaction: A text mining and machine learning application», Journal of Business Research, no. 131, pp. 815-825. https://doi.org/10.1016/j.jbusres.2020.10.043

CHEN, C.-C. and SCHWARTZ, Z. (2010): «The Impact of hedonic and utilitarian motivations on the hotel customers’ risk perception», Emerging Issues and Trends in Hospitality and Tourism Research, Paper 5. http://digitalscholarship.unlv.edu/hhrc/2010/june2010/5/

CHEN, L., LI, W., CHEN, H. and GENG, S. (2019): «Detection of Fake Reviews: Analysis of Sellers’ Manipulation Behavior», Sustainability, vol. 11 (17), 4802. https://doi.org/10.3390/su11174802

CHEN, Y.-F. and LAW, R. (2016): «A review of research on electronic word-of-mouth in hospitality and tourism management», International Journal of Hospitality and Tourism Administration, vol. 17 (4), pp. 347-372. https://doi.org/10.1080/15256480.2016.1226150

CHOI, S., MATTILA, A. S., VAN HOOF, H. B. and QUADRI-FELITTI, D. (2017): «The Role of Power and Incentives in Inducing Fake Reviews in the Tourism Industry», Journal of Travel Research, vol. 56 (8), pp. 975-987. https://doi.org/10.1177/0047287516677168

DÍAZ, M.R. and RODRÍGUEZ, T.F.E. (2018): «Determining the reliability and validity of online reputation databases for lodging: Booking.com, TripAdvisor, and Holiday Check», Journal of Vacation Marketing, vol. 24 (3), pp. 261-274. https://doi.org/10.1177/1356766717706103

DUNHAM, K, and MELNICK, J. (2009): «Malicious bots: An Inside look into the cyber-criminal underground of the internet», CRC Press.

FESTINGER, L. (1954): «A theory of social comparison processes», Human Relations, vol. 7 (2), pp. 117-140.

FILIERI, R., ALGUEZAUI, S. and MCLEAY, F. (2015): «Why do travelers trust TripAdvisor? Antecedents of trust towards consumer-generated media and its influence on recommendation adoption and word of mouth», Tourism Management, vol. 51, pp. 174-185. https://doi.org/10.1016/j.tourman.2015.05.007

GOFFMAN, E. (1959): The presentation of self in everyday life, Doubleday.

GÖSSLING, S., HALL, C.M. and ANDERSSON, A.-C. (2018): «The manager’s dilemma: A conceptualization of online review manipulation strategies», Current Issues in Tourism, vol. 21 (5), pp. 484-503. https://doi.org/10.1080/13683500.2015.1127337

HEYDARI, A., TAVAKOLI, M. ALI, SALIM, N. and HEYDARI, Z. (2015): «Detection of review spam: A survey», Expert Systems with Applications, vol. 42 (7), pp. 3634-3642. https://doi.org/10.1016/j.eswa.2014.12.029

KAC, M. (1959): «Statistical independence in probability, analysis and number theory», The Mathematical Association of America.

KRUSKAL, W. (1988): «Miracles and statistics: The casual assumption of independence», Journal of the American Statistical Association, vol. 83 (404), pp. 929-940. https://doi.org/10.1080/01621459.1988.10478682

KURIAKOSE, N. and ROBBINS, M. (2016): «Don’t get duped: Fraud through duplication in public opinion surveys», Statistical Journal of the IAOS, vol. 32 (3), pp. 283-291. https://doi.org/10.3233/SJI-160978

KWOK, L., XIE, K.L. and RICHARDS, T. (2017): «Thematic framework of online review research: A systematic analysis of contemporary literature on seven major hospitality and tourism journals», International Journal of Contemporary Hospitality Management, vol. 29 (1), pp. 307-354. https://doi.org/10.1108/IJCHM-11-2015-0664

LAU, R.Y.K., LIAO, S.Y., KWOK, R.C.-W., XU, K., XIA, Y. and LI, Y. (2011): «Text mining and probabilistic language modelling for online review spam detection», ACM Transactions on Management Information Systems, vol. 2 (4), pp. 1-30. https://doi.org/10.1145/2070710.2070716

LI, H., MENG, F. and HUDSON, S. (2023): «Are Hotel Guests Altruistic? How Positive Review Disconfirmation Affects Consumers’ Online Review Behavior», Journal of Hospitality and Tourism Research, 47(3), 528-548. https://doi.org/10.1177/10963480211030313

LI, J., OTT, M., CARDIE, C. and HOVY, E. (2014): «Towards a general rule for identifying deceptive opinion spam», In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Vol. 1: Long Papers), pp.1566-1576, Baltimore, Maryland. Association for Computational Linguistics.

LI, L., LEE, K. Y., LEE, M. and YANG, S.-B. (2020): «Unveiling the cloak of deviance: Linguistic cues for psychological processes in fake online reviews», International Journal of Hospitality Management, vol. 87, 102468. https://doi.org/10.1016/j.ijhm.2020.102468

LIN, Y., ZHU, T., WANG, X., ZHANG, J. and ZHOU, A. (2014): «Towards online review spam detection», In Proceedings of the 23rd International Conference on World Wide Web - WWW ’14 Companion, pp. 341-342. https://doi.org/10.1145/2567948.2577293

MAYZLIN, D., DOVER, Y. and CHEVALIER, J. (2014): «Promotional Reviews: An Empirical Investigation of Online Review Manipulation», American Economic Review, vol. 104 (8), pp. 2421-2455. https://doi.org/10.1257/aer.104.8.2421

OLIVEIRA, A.S., RENDA, A.I., CORREIA, M.B. and ANTONIO, N. (2022): «Hotel customer segmentation and sentiment analysis through online reviews: an analysis of selected European markets», Tourism and Management Studies, vol. 18 (1), pp. 29-40. https://doi.org/10.18089/tms.2022.180103

OLIVER, R.L. (1980): «A cognitive model of the antecedents and consequences of satisfaction decisions», Journal of Marketing Research, vol. 17 (4), pp. 460-469.

PETRESCU, M., O’LEARY, K., GOLDRING, D. and BEN MRAD, S. (2018): «Incentivized reviews: Promising the moon for a few stars», Journal of Retailing and Consumer Services, vol. 41, pp. 288-295. https://doi.org/10.1016/j.jretconser.2017.04.005

PYLE, M.A., SMITH, A.N. and CHEVTCHOUK, Y. (2021): «In eWOM we trust: Using naïve theories to understand consumer trust in a complex eWOM marketspace», Journal of Business Research, vol. 122, pp. 145-158. https://doi.org/10.1016/j.jbusres.2020.08.063

R CORE TEAM. (2016): «R: A language and environment for statistical computing», R Foundation for Statistical Computing. https://www.R-project.org/

ROSS, L. (1977): The Intuitive Psychologist and His Shortcomings: Distortions in the Attribution Process. In L. BERKOWITZ (Ed.), Advances in Experimental Social Psychology (pp. 173-220). New York: Academic Press.

RYAN, R. M. and DECI, E. L. (2000): «Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being», American Psychologist, vol. 55 (1), pp. 68-78.

SALEHI-ESFAHANI, S. and OZTURK, A. B. (2018): «Negative reviews: Formation, spread, and halt of opportunistic behaviour», International Journal of Hospitality Management, vol. 74, pp. 138-146. https://doi.org/10.1016/j.ijhm.2018.06.022

SARRACINO, F. and MIKUCKA, M. (2017): «Bias and efficiency loss in regression estimates due to duplicated observations: A Monte Carlo simulation», Survey Research Methods, vol. 11 (1). https://doi.org/10.18148/srm/2017.v11i1.7149

TAJFEL, H. and TURNER, J. C. (1979): «An integrative theory of intergroup conflict», In W. G. Austin and S. Worchel (Eds.), The social psychology of intergroup relations (pp. 33-47). Brooks/Cole.

THAKUR, R., HALE, D. and SUMMEY, J. H. (2018): «What Motivates Consumers to Partake in Cyber Shilling?», Journal of Marketing Theory and Practice, vol. 26 (1-2), pp. 181-195. https://doi.org/10.1080/10696679.2017.1389236

TRIPADVISOR. (n.d.-a): «How often can I write a review?», TripAdvisor Help Center. Retrieved August 16, 2022, from http://www.tripadvisorsupport.com/hc/en-us/articles/200614897-How-often-can-I-write-a-review-

TRIPADVISOR. (n.d.-b): «Why isn’t my review posted yet?», TripAdvisor Help Center. Retrieved August 16, 2022, from http://www.tripadvisorsupport.com/hc/en-us/articles/200614817-Why-isn-t-my-review-posted-yet-

TRIPADVISOR. (2017, September 11): «All about your TripAdvisor bubble rating», TripAdvisor. https://www.tripadvisor.com/TripAdvisorInsights/w810

VELICIA-MARTIN, F., FOLGADO-FERNANDEZ, J.A., PALOS-SANCHEZ, P. and LOPEZ-CATALAN, B. (2022): «MWOM business strategies: Factors affecting recommendations», Journal of Computer Information Systems, 2041504. https://doi.org/10.1080/08874417.2022.2041504

WALTHER M., JAKOBI T., WATSON S.J. and STEVENS G. (2023): «A systematic literature review about the consumers’ side of fake review detection - Which cues do consumers use to determine the veracity of online user reviews?», Computers in Human Behavior Reports, vol. 10. https://doi.org/10.1016/j.chbr.2023.100278

WICKHAM, H., FRANÇOIS, R., HENRY, L. and MÜLLER, K. (2018): «dplyr: A grammar of data manipulation (R package version 0.7.8)». https://CRAN.R-project.org/package=dplyr

Publicado
22-12-2023
Cómo citar
António, N., Correia, M. B., & Perdigão Ribeiro , F. (2023). COMPRENSIÓN DE LOS IMPACTOS Y LAS MOTIVACIONES DE LAS RESEÑAS DUPLICADAS EN TRIPADVISOR. Cuadernos De Turismo, (52), 219–238. https://doi.org/10.6018/turismo.593611
Número
Sección
Artículos