Imputación múltiple de valores perdidos en el análisis factorial exploratorio de escalas multidimensionales: estimación de las puntuaciones de rasgos latentes
Agencias de apoyo
- The research was partially supported by a grant from the Catalan Ministry of Universities
- Research and the Information Society (2014 SGR 73) and by a grant from the Spanish Ministry of Education and Science (PSI2014-52884-P).
Resumen
Los investigadores con frecuencia se enfrentan a la difícil tarea de analizar las escalas en las que algunos de los participantes no han respondido a todos los ítems. En este artículo nos centramos en el análisis factorial exploratorio de escalas multidimensionales (es decir, escalas que constan de varias de subescalas), donde cada subescala se compone de una serie de ítems de tipo Likert, y el objetivo del análisis es estimar las puntuaciones de los participantes en los rasgos latentes correspondientes. En este contexto, se propone un nuevo enfoque para hacer frente a las respuestas faltantes que se basa en (1) la imputación múltiple de las respuestas faltantes y (2) la rotación simultánea de las muestras de datos imputados. Se ha aplicado el método en una muestra de datos reales en que las respuestas que faltantes fueron introducidas artificialmente siguiendo un patrón real de respuestas faltantes, y un estudio de simulación basado en conjuntos de datos artificiales. Los resultados muestran que nuestro enfoque (en concreto, Hot-Deck de imputación múltiple seguido de rotación Consensus Promin) es capaz de calcular correctamente la puntuación factorial estimada incluso para los participantes que tienen valores perdidos.
Descargas
Citas
Aittokallio, T. (2010). Dealing with missing values in large-scale studies: microarray data imputation and beyond. Briefings in bioinformatics, 11, 253-264. doi:10.1093/bib/bbp059.
Andridge, R. R., & Little, R. J. (2010). A review of Hot Deck imputation for survey non-response. International Statistical Review, 78, 40-64. doi:10.1111/j.1751-5823.2010.00103.x.
Ayala, R. J., Plake, B. S., & Impara, J. C. (2001). The impact of omitted responses on the accuracy of ability estimation in item response theory. Journal of educational measurement, 38, 213-234. doi:10.1111/j.1745-3984.2001.tb01124.x.
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: an application of the EM algorithm. Psychometrika, 46, 443-459. doi:10.1007/BF02293801.
Chen, J., & Choi, J. (2009). A comparison of maximum likelihood and expected a posteriori estimation for polychoric correlation using Monte Carlo simulation. Journal of Modern Applied Statistical Methods, 8(1), 32.
Cuesta, M., Fonseca, E., Vallejo, G., & Muñiz, J. (2013). Datos perdidos y propiedades psicométricas en los test de personalidad. Anales de Psicología, 29(1), 285-292. doi:10.6018/analesps.29.1.137901.
DeMars, C. (2003, April). Missing data and IRT item parameter estimation. Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL.
Ferrando, P.J. & Lorenzo-Seva, U. (2013). Unrestricted item factor analysis and some relations with item response theory. Technical Report. Department of Psychology, Universitat Rovira i Virgili, Tarragona. Retrieved from http://psico.fcep.urv.cat/utilitats/factor.
Finch, H. (2008). Estimation of item response theory parameters in the presence of missing data. Journal of Educational Measurement, 45, 225-245. doi:10.1111/j.1745-3984.2008.00062.x.
Finch, H. (2011). The Use of Multiple Imputation for Missing Data in Uniform DIF Analysis: Power and Type I Error Rates. Applied Measurement in Education, 24, 281-301. doi:10.1080/08957347.2011.607054.
Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual review of psychology, 60, 549-576. doi: 10.1146/annurev.psych.58.110405.085530
Huisman, M., & Molenaar, I. W. (2001). Imputation of missing scale data with item response models. In Essays on item response theory (pp. 221-244). Springer New York. doi:10.1007/978-1-4613-0169-1_13.
Johnson, D. R., & Young, R. (2011). Toward best practices in analyzing datasets with missing data: Comparisons and recommendations. Journal of Marriage and Family, 73, 926-945. doi:10.1111/j.1741-3737.2011.00861.x.
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31-36. doi:10.1007/BF02291575
Kiers, H. A. (1997). Techniques for rotating two or more loading matrices to optimal agreement and simple structure: A comparison and some technical details. Psychometrika, 62, 545-568. doi:10.1007/bf02294642.
Kleinke, K., Stemmler, M., Reinecke, J., & Lösel, F. (2011). Efficient ways to impute incomplete panel data. AStA Advances in Statistical Analysis, 95, 351-373. doi:10.1007/s10182-011-0179-9.
Lorenzo-Seva, U. (1999). Promin: a method for oblique factor rotation. Multivariate Behavioral Research, 34, 347-365. doi:10.1207/S15327906MBR3403_3.
Lorenzo-Seva, U., & Ferrando, P. J. (2013). FACTOR 9.2: A Comprehensive Program for Fitting Exploratory and Semiconfirmatory Factor Analysis and IRT Models. Applied Psychological Measurement, 37, 497-498. doi:10.1177/0146621613487794.
Lorenzo-Seva, U.; Kiers, H. A. L.; ten Berge, J. M. F. (2002). Techniques for oblique factor rotation of two or more loading matrices to a mixture of simple structure and optimal agreement. British Journal of Mathematical & Statistical Psychology, 55, 337-360. doi:10.1348/000711002760554624.
Mislevy, R. J. (1986). Recent developments in the factor analysis of categorical variables. Journal of educational statistics, 11, 3-31. doi:10.3102/10769986011001003.
Moustaki, I., Joreskog, K., & Mavridis, D. (2004). Factor models for ordinal variables with covariate effects on the manifest and latent variables: a comparison of LISREL and IRT approaches. Structural equation modelling, 11, 487-513. doi:10.1207/s15328007sem1104_1.
Muraki, E., & Engelhard, G. (1985). Full-information item factor analysis: Applications of EAP scores. Applied Psychological Measurement, 9, 417-430. doi:10.1177/014662168500900411.
Muthén, L. K., & Muthén, B. O. (1998-2011). Mplus User's Guide. (Sixth ed.). Los Angeles, CA: Muthén & Muthén.
Myers, T. A. (2011). Goodbye, listwise deletion: Presenting hot deck imputation as an easy and effective tool for handling missing data. Communication Methods and Measures, 5(4), 297-310. doi:10.1080/19312458.2011.624490.
Ono, M., & Miller, H. P. (1969). Income nonresponses in the current population survey. In Proceedings of the Social Statistics Section, American Statistical Association, 277-288.
Rässler, S., Rubin, D. B., & Zell, E. R. (2013). Imputation. Wiley Interdisciplinary Reviews: Computational Statistics, 5, 20-29. doi:10.1002/wics.1240.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592. doi:10.1093/biomet/63.3.581.
Rubin, D. B. (1978). Multiple imputations in sample surveys-a phenomenological Bayesian approach to nonresponse. In Proceedings of the Section on Survey Research Methods, American Statistical Association, 20-34.
Rubin, D. B. (1986). Statistical matching using file concatenation with adjusted weights and multiple imputations. Journal of Business & Economic Statistics, 4, 87-94. doi:10.1080/07350015.1986.10509497.
Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological methods, 7, 147. doi: 10.1037/1082-989x.7.2.147.
Schlomer, G. L., Bauman, S., & Card, N. A. (2010). Best practices for missing data management in counseling psychology. Journal of Counseling Psychology, 57, 1-10. doi:10.1037/a0018082.
Siddique, J., & Belin, T. R. (2007). Multiple imputation using an iterative hot-deck with distance-based donor selection. Statistics in medicine, 27, 83-102. doi:10.1002/sim.3001.
Sijtsma, K., & Van der Ark, L. A. (2003). Investigation and treatment of missing item scores in test and questionnaire data. Multivariate Behavioral Research, 38, 505-528. doi:10.1207/s15327906mbr3804_4.
Ten Berge, J. M. (1977). Orthogonal Procrustes rotation for two or more matrices. Psychometrika, 42, 267-276. doi:10.1007/BF02294053.
Timmerman, M.E.; Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16, 209-220. doi:10.1037/a0023353.
Tucker, L. R., Koopman, R. F., & Linn, R. L. (1969). Evaluation of factor analytic research procedures by means of simulated correlation matrices. Psychometrika, 34, 421-459. doi:10.1007/BF02290601.
Vervloet, M., Kiers, H. A., Van den Noortgate, W., & Ceulemans, E. (2015). PCovR: An R Package for Principal Covariates Regression. Journal of Statistical Software, 65, 1-14. doi:10.18637/jss.v065.i08.
Vigil-Colet, A., Morales-Vives, F., Camps, E., Tous, J., & Lorenzo-Seva, U. (2013). Development and validation of the Overall Personality Assessment Scale (OPERAS). Psicothema, 25, 100-106. doi:10.7334/psicothema2011.411.
Wolkowitz, A. A., & Skorupski, W. P. (2013). A Method for Imputing Response Options for Missing Data on Multiple-Choice Assessments. Educational and Psychological Measurement, 73, 1036-1053. doi:10.1177/0013164413497016.
Yuan, K. H., & Lu, L. (2008). SEM with missing data and unknown population distributions using two-stage ML: Theory and its application. Multivariate Behavioral Research, 43, 621-652. doi:10.1080/00273170802490699.
Yuan, K. H., & Savalei, V. (2014). Consistency, bias and efficiency of the normal-distribution-based MLE: The role of auxiliary variables. Journal of Multivariate Analysis, 124, 353-370. doi:10.1016/j.jmva.2013.11.006.
Yuan, K. H., & Zhang, Z. (2012). Robust structural equation modeling with missing data and auxiliary variables. Psychometrika, 77, 803-826. doi:10.1007/s11336-012-9282-4.
Yuan, K. H., Marshall, L. L., & Bentler, P. M. (2002). A unified approach to exploratory factor analysis with missing data, nonnormal data, and in the presence of outliers. Psychometrika, 67, 95-121. doi:10.1007/BF02294711.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia, 2024
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada y enviada a la revista) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.