La influencia del sexo en la prueba de natación de alta intensidad
Resumen
Se han reportado diferencias basadas en el sexo en las demandas energéticas y mecánicas de diferentes modalidades de ejercicio; sin embargo, ningún estudio ha analizado la influencia del sexo durante la natación de alta intensidad. El objetivo de este estudio fue determinar las diferencias basadas en el sexo en la respuesta a una prueba de natación de alta intensidad sobre el rendimiento, la fatiga, las concentraciones de lactato en sangre (BLa) y la percepción subjetiva del esfuerzo (RPE). Un total de 23 nadadores competitivos (11 hombres; 12 mujeres) realizaron 8 series de 50 m a máxima intensidad, con 2 minutos de recuperación entre series. Antes y después del ejercicio se analizó el BLa. Además, la RPE se administró al final de cada serie de 50 m. Se detectaron diferencias en la prueba de natación de alta intensidad según el sexo (η²p = 0,566; p < 0,001) y el tiempo (η²p = 0,233; p < 0,001), pero no para la interacción tiempo·sexo (p > 0,05). Se reportó un efecto del tiempo sobre el BLa (η²p = 0,947; p < 0,001) y la RPE (η²p = 0,559; p < 0,001), pero no del sexo ni de la interacción tiempo·sexo (p > 0,05). Aunque los hombres fueron más rápidos, no se encontraron diferencias en BLa, fatiga ni RPE entre sexos. Estos resultados podrían estar mediados por la naturaleza de máxima intensidad del protocolo, y las implicaciones prácticas sugieren que no es necesario adaptar la carga de entrenamiento en sesiones de natación de alta intensidad según el sexo de los atletas.
Descargas
-
Resumen107
-
PDF 59
Citas
1. Almeida, T. A. F., Massini, D. A., Silva Júnior, O. T., Venditti Júnior, R., Espada, M. A. C., Macedo, A. G., Reis, J. F., Alves, F. B., & Pessôa Filho, D. M. (2022). Time limit and V̇O2 kinetics at maximal aerobic velocity: Continuous vs. intermittent swimming trials. Frontiers in Physiology, 13, 1-10. https://doi.org/10.3389/fphys.2022.982874
2. Almeida, T. A. F., Pessôa Filho, D. M., Espada, M. C., Reis, J. F., Sancassani, A., Massini, D. A., Santos, F. J., & Alves, F. B. (2021). Physiological Responses During High-Intensity Interval Training in Young Swimmers. Frontiers in Physiology, 12, 1-12. https://doi.org/10.3389/fphys.2021.662029
3. Astorino, T. A., & Sheard, A. C. (2019). Does sex mediate the affective response to high intensity interval exercise? Physiology & Behavior, 204, 27–32. https://doi.org/10.1016/j.physbeh.2019.02.005
4. Borg, G. (1998). Borg’s perceived exertion and pain scales. Human Kinetics.
5. Braun, J., Masoud, M., Brixius, K., & Brinkmann, C. (2016). Oxidativer Stress bei Mastersschwimmern nach hochintensivem (Intervall-)Training (HI(I)T). Wiener medizinische Wochenschrift, 166(7-8), 242–249. https://doi.org/10.1007/s10354-016-0451-4
6. Coquart, J. B., Garcin, M., Parfitt, G., Tourny-Chollet, C., & Eston, R. G. (2014). Prediction of maximal or peak oxygen uptake from ratings of perceived exertion. Sports Medicine, 44(5), 563–578. https://doi.org/10.1007/s40279-013-0139-5
7. Crewther, B.T., Cook, C., Cardinale, M., Weatherby, R. P., & Lowe, T. (2011). Two emerging concepts for elite athletes: the short-term effects of testosterone and cortisol on the neuromuscular system and the dose-response training role of these endogenous hormones. Sports Medicine, 41(2), 103–123. https://doi.org/10.2165/11539170-000000000-00000
8. Cuenca-Fernández, F., Boullosa, D., Ruiz-Navarro, J. J., Gay, A., Morales-Ortíz, E., López-Contreras, G., & Arellano, R. (2023). Lower fatigue and faster recovery of ultra-short race pace swimming training sessions. Research in Sports Medicine, 31(1), 21–34. https://doi.org/10.1080/15438627.2021.1929227
9. Dalamitros, A. A., Semaltianou, E., Toubekis, A. G., & Kabasakalis, A. (2021). Muscle Oxygenation, Heart Rate, and Blood Lactate Concentration During Submaximal and Maximal Interval Swimming. Frontiers in Sports and Active Living, 3, 1-6. https://doi.org/10.3389/fspor.2021.759925
10. Faude, O., Meyer, T., Scharhag, J., Weins, F., Urhausen, A., & Kindermann, W. (2008). Volume vs. intensity in the training of competitive swimmers. International Journal of Sports Medicine, 29(11), 906–912. https://doi.org/10.1055/s-2008-1038377
11. Forouzandeh Shahraki, S., Minoonejad, H., & Moghadas Tabrizi, Y. (2020). Comparison of some intrinsic risk factors of shoulder injury in three phases of menstrual cycle in collegiate female athletes. Physical Therapy in Sport, 43, 195–203. https://doi.org/10.1016/j.ptsp.2020.02.010
12. Fournier, G., Bernard, C., Cievet-Bonfils, M., Kenney, R., Pingon, M., Sappey-Marinier, E., Chazaud, B., Gondin, J., & Servien, E. (2022). Sex differences in semitendinosus muscle fiber-type composition. Scandinavian Journal of Medicine & Science in Sports, 32(4), 720–727. https://doi.org/10.1111/sms.14127
13. Gallagher, D., Visser, M., De Meersman, R. E., Sepúlveda, D., Baumgartner, R. N., Pierson, R. N., Harris, T., & Heymsfield, S. B. (1997). Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. Journal of Applied Physiology, 83(1), 229–239. https://doi.org/10.1152/jappl.1997.83.1.229
14. Garcin, M., Fleury, A., Mille-Hamard, L., & Billat, V. (2005). Sex-related differences in ratings of perceived exertion and estimated time limit. International Journal of Sports Medicine, 26(8), 675–681. https://doi.org/10.1055/s-2004-830440
15. Goodwin, M. L., Harris, J. E., Hernández, A., & Gladden, L. B. (2007). Blood lactate measurements and analysis during exercise: a guide for clinicians. Journal of Diabetes Science and Technology, 1(4), 558–569. https://doi.org/10.1177/193229680700100414
16. Handelsman, D. J., Hirschberg, A. L., & Bermon, S. (2018). Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocrine Reviews, 39(5), 803–829. https://doi.org/10.1210/er.2018-00020
17. Handelsman, D. J., Sikaris, K., & Ly, L. P. (2016). Estimating age-specific trends in circulating testosterone and sex hormone-binding globulin in males and females across the lifespan. Annals of Clinical Biochemistry, 53, 377–384. https://doi.org/10.1177/0004563215610589
18. Herrera, R., & López-Plaza, D. (2023). Effects of a maximal strength training program in competitive swimmers: a systematic review. Archivos de Medicina Del Deporte, 40, 77–85. https://doi.org/10.18176/archmeddeporte.00133
19. Hunter, S. K., S Angadi, S., Bhargava, A., Harper, J., Hirschberg, A. L., D Levine, B., L Moreau, K., J Nokoff, N., Stachenfeld, N. S., & Bermon, S. (2023). The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Medicine and Science in Sports and Exercise, 55(12), 2328–2360. https://doi.org/10.1249/MSS.0000000000003300
20. Kabasakalis, A., Nikolaidis, S., Tsalis, G., & Mougios, V. (2020). Response of Blood Biomarkers to Sprint Interval Swimming. International Journal of Sports Physiology and Performance, 15(10), 1442–1447. https://doi.org/10.1123/ijspp.2019-0747
21. Kabasakalis, A., Nikolaidis, S., Tsalis, G., & Mougios, V. (2022). Low-Volume Sprint Interval Swimming Is Sufficient to Increase Blood Metabolic Biomarkers in Master Swimmers. Research Quarterly for Exercise and Sport, 93(2), 318–324. https://doi.org/10.1080/02701367.2020.1832183
22. Karabiyik, H., Gülü, M., Yapici, H., Iscan, F., Yagin, F. H., Durmuş, T., Gürkan, O., Güler, M., Ayan, S., & Alwhaibi, R. (2023). Effects of 12 Weeks of High-, Moderate-, and Low-Volume Training on Performance Parameters in Adolescent Swimmers. Applied Sciences, 13(20), 1-17. https://doi.org/10.3390/app132011366
23. Karayigit, R., Ramirez-Campillo, R., Yasli, B.C., Gabrys, T., Benesova, D., & Esen, O. (2022). High Dose of Acute Normobaric Hypoxia Does Not Adversely Affect Sprint Interval Training, Cognitive Performance and Heart Rate Variability in Males and Females. Biology, 11(10), 1-12. https://doi.org/10.3390/biology11101463
24. Kelly, M., Gibney, G., Mullins, J., Ward, T., Donne, B., & O’Brien, M. (1992). A study of blood lactate profiles across different swimming strokes. In: Biomechanics and Medicine in Swimming. Swimming Science VI. D. MacLaren, A. Lees, and T. Reilly, eds. London, United Kingdom: E. & F.N. Spon, 227–233.
25. Kilen, A., Larsson, T. H., Jørgensen, M., Johansen, L., Jørgensen, S., & Nordsborg, N.B. (2014). Effects of 12 weeks high-intensity & reduced-volume training in elite athletes. PloS one, 9(4), 1-8. https://doi.org/10.1371/journal.pone.0095025
26. La Monica, M. B., Fukuda, D. H., Starling-Smith, T. M., Clark, N. W., Morales, J., Hoffman, J. R., & Stout, J. R. (2019). Examining work-to-rest ratios to optimize upper body sprint interval training. Respiratory physiology & neurobiology, 262, 12–19. https://doi.org/10.1016/j.resp.2019.01.005
27. Laurent, C. M., Vervaecke, L. S., Kutz, M. R., & Green, J. M. (2014). Sex-specific responses to self-paced, high-intensity interval training with variable recovery periods. Journal of Strength and Conditioning Research, 28(4), 920–927. https://doi.org/10.1519/JSC.0b013e3182a1f574
28. Lavoie, J. M., & Montpetit, R. R. (1986). Applied physiology of swimming. Sports Medicine, 3(3), 165–189. https://doi.org/10.2165/00007256-198603030-00002
29. Lock, M., Yousef, I., McFadden, B., Mansoor, H., & Townsend, N. (2024). Cardiorespiratory Fitness and Performance Adaptations to High-Intensity Interval Training: Are There Differences Between Men and Women? A Systematic Review with Meta-Analyses. Sports Medicine, 54(1), 127–167. https://doi.org/10.1007/s40279-023-01914-0
30. Magal, M., Liette, N. C., Crowley, S. K., Hoffman, J. R., & Thomas, K. S. (2021). Sex-Based Performance Responses to an Acute Sprint Interval Cycling Training Session in Collegiate Athletes. Research Quarterly for Exercise and Sport, 92(3), 469–476. https://doi.org/10.1080/02701367.2020.1751026
31. Maglischo, E. W. (2003). Swimming fastest. Human kinetics. Champaign, IL (USA).
32. Marinho, D. A., Ferreira, M. I., Barbosa, T. M., Vilaça-Alves, J., Costa, M. J., Ferraz, R., & P. Neiva, H. (2020). Energetic and Biomechanical Contributions for Longitudinal Performance in Master Swimmers. Journal of Functional Morphology and Kinesiology, 5(2), 1-12. https://doi.org/10.3390/jfmk5020037
33. Massini, D. A., Almeida, T. A. F., Vasconcelos, C. M. T., Macedo, A. G., Espada, M. A. C., Reis, J. F., Alves, F. J. B., Fernandes, R. J. P., & Pessôa Filho, D. M. (2021). Are Young Swimmers Short and Middle Distances Energy Cost Sex-Specific?. Frontiers in Physiology, 12, 1-13. https://doi.org/10.3389/fphys.2021.796886
34. Maud, P. J., & Shultz, B. B. (1986). Gender comparisons in anaerobic power and anaerobic capacity tests. British Journal of Sports Medicine, 20(2), 51–54. https://doi.org/10.1136/bjsm.20.2.51
35. McGibbon, K. E., Pyne, D. B., Shephard, M. E., & Thompson, K. G. (2018). Pacing in Swimming: A Systematic Review. Sports Medicine, 48(7), 1621–1633. https://doi.org/10.1007/s40279-018-0901-9
36. McNulty, K. L., Elliott-Sale, K. J., Dolan, E., Swinton, P. A., Ansdell, P., Goodall, S., Thomas, K., & Hicks, K. M. (2020). The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Medicine, 50(10), 1813–1827. https://doi.org/10.1007/s40279-020-01319-3
37. Miller, A. E., MacDougall, J. D., Tarnopolsky, M. A., & Sale, D. G. (1993). Gender differences in strength and muscle fiber characteristics. European Journal of Applied Physiology and Occupational Physiology, 66(3), 254–262. https://doi.org/10.1007/BF00235103
38. Moser, C., Sousa, C. V., Olher, R. R., Nikolaidis, P. T., & Knechtle, B. (2020). Pacing in World-Class Age Group Swimmers in 100 and 200 m Freestyle, Backstroke, Breaststroke, and Butterfly. International Journal of Environmental Research and Public Health, 17(11), 1-10. https://doi.org/10.3390/ijerph17113875
39. Notelovitz M. (2002). Androgen effects on bone and muscle. Fertility and Sterility, 77, 34–41. https://doi.org/10.1016/s0015-0282(02)02968-0
40. Papadimitriou, K., Kabasakalis, A., Papadopoulos, A., Mavridis, G., & Tsalis, G. (2023). Comparison of Ultra-Short Race Pace and High-Intensity Interval Training in Age Group Competitive Swimmers. Sports, 11(9), 1-13. https://doi.org/10.3390/sports11090186
41. Pendergast, D. R., Di Prampero, P. E., Craig, A. B. Jr, Wilson, D. R., & Rennie, D. W. (1977). Quantitative analysis of the front crawl in men and women. Journal of Applied Physiology, 43(3), 475–479. https://doi.org/10.1152/jappl.1977.43.3.475
42. Pugliese, L., Porcelli, S., Bonato, M., Pavei, G., La Torre, A., Maggioni, M. A., Bellistri, G., & Marzorati, M. (2015). Effects of manipulating volume and intensity training in masters swimmers. International Journal of Sports Physiology and Performance, 10(7), 907–912. https://doi.org/10.1123/ijspp.2014-0171
43. Rael, B., Alfaro-Magallanes, V. M., Romero-Parra, N., Castro, E. A., Cupeiro, R., de Jonge, X. A. K. J., Wehrwein, E. A., & Peinado, A. B. (2021). Menstrual cycle phases influence on cardiorespiratory response to exercise in endurance-trained females. International Journal of Environmental Research and Public Health, 18(3), 1-12. https://doi.org/10.3390/ijerph18030860
44. Richardson, J.T.E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135–147. https://doi.org/https://doi.org/10.1016/j.edurev.2010.12.001
45. Sandbakk, Ø., Solli, G. S., & Holmberg, H. C. (2018). Sex Differences in World-Record Performance: The Influence of Sport Discipline and Competition Duration. International journal of Sports Physiology and Performance, 13(1), 2–8. https://doi.org/10.1123/ijspp.2017-0196
46. Seiler, S., De Koning, J. J., & Foster, C. (2007). The fall and rise of the gender difference in elite anaerobic performance 1952-2006. Medicine and Science in Sports and Exercise, 39(3), 534–540. https://doi.org/10.1249/01.mss.0000247005.17342.2b
47. Senefeld, J. W., Clayburn, A. J., Baker, S. E., Carter, R. E., Johnson, P. W., & Joyner, M. J. (2019). Sex differences in youth elite swimming. PloS One, 14(11), 1-9. https://doi.org/10.1371/journal.pone.0225724
48. Soultanakis, H. N., Mandaloufas, M. F., & Platanou, T. I. (2012). Lactate threshold and performance adaptations to 4 weeks of training in untrained swimmers: volume vs. intensity. Journal of Strength and Conditioning Research, 26(1), 131–137. https://doi.org/10.1519/JSC.0b013e31821eb7bd
49. Staron, R. S., Hagerman, F. C., Hikida, R. S., Murray, T. F., Hostler, D. P., Crill, M. T., Ragg, K. E., & Toma, K. (2000). Fiber type composition of the vastus lateralis muscle of young men and women. The Journal of Histochemistry and Cytochemistry, 48(5), 623–629. https://doi.org/10.1177/002215540004800506
50. Tanaka, H., & Seals, D. R. (1997). Age and gender interactions in physiological functional capacity: insight from swimming performance. Journal of Applied Physiology, 82(3), 846–851. https://doi.org/10.1152/jappl.1997.82.3.846
51. Terzi, E., Skari, A., Nikolaidis, S., Papadimitriou, K., Kabasakalis, A., & Mougios, V. (2021). Relevance of a Sprint Interval Swim Training Set to the 100-Meter Freestyle Event Based on Blood Lactate and Kinematic Variables. Journal of Human Kinetics, 80, 153–161. https://doi.org/10.2478/hukin-2021-0091
52. Toussaint, H. M., & Hollander, A. P. (1994). Energetics of competitive swimming. Implications for training programmes. Sports Medicine, 18(6), 384–405. https://doi.org/10.2165/00007256-199418060-00004
53. Truijens, M. J., Rodríguez, F. A., Townsend, N. E., Stray-Gundersen, J., Gore, C. J., & Levine, B. D. (2008). The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners. Journal of Applied Physiology, 104(2), 328–337. https://doi.org/10.1152/japplphysiol.01324.2006
54. Ueda, T., & Kurokawa, T. (1995). Relationships between perceived exertion and physiological variables during swimming. International Journal of Sports Medicine, 16(6), 385–389. https://doi.org/10.1055/s-2007-973025
55. Weber, C. L., Chia, M., & Inbar, O. (2006). Gender differences in anaerobic power of the arms and legs--a scaling issue. Medicine and Science in Sports and Exercise, 38(1), 129–137. https://doi.org/10.1249/01.mss.0000179902.31527.2c
56. Zacca, R., Azevedo, R., Peterson Silveira, R., Vilas-Boas, J. P., Pyne, D. B., Castro, F. A. S., & Fernandes, R. J. (2019). Comparison of Incremental Intermittent and Time Trial Testing in Age-Group Swimmers. Journal of Strength and Conditioning Research, 33(3), 801–810. https://doi.org/10.1519/JSC.0000000000002087
57. Zamparo, P., Cortesi, M., & Gatta, G. (2020). The energy cost of swimming and its determinants. European Journal of Applied Physiology, 120(1), 41–66. https://doi.org/10.1007/s00421-019-04270-y
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia, 2013
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica.

















