The influence of sex on high intensity swimming test

Authors

  • Javier Moreno Lara Department of Human Movement and Sports Performance, University of Seville, Spain.
  • Inmaculada López-León Department of Human Movement and Sports Performance, University of Seville, Spain.
  • Luís Leitão Sciences and Technology Department, Superior School of Education of Polytechnic Institute of Setubal, 2910-761 Setúbal, Portugal.
  • Sandro Fernandes da Silva Physical Education Department, University of Lavras, Lavras, Brazil - Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37203-202, Brazil.
  • Antonio Jesús Sánchez-Oliver Department of Human Movement and Sports Performance, University of Seville, Spain / Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37203-202, Brazil.
  • Raúl Domínguez Department of Human Movement and Sports Performance, University of Seville, Spain / Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37203-202, Brazil.
DOI: https://doi.org/10.6018/sportk.608401
Keywords: Exercise, High Intensity Interval Training, Lactate, Metabolism, Physical Exertion

Abstract

Differences based on sex have been reported in the energetic and mechanical demands of different exercise modalities; however, no studies have analyzed the influence of sex during high-intensity swimming. The aim of this study was to determine sex-based differences in the response to a high intensity swimming test on performance, fatigue, blood lactate concentrations (BLa) and rating of perceived exertion (RPE). A total of 23 competitive swimmers (11 males; 12 females) performed 8 sets of 50-m at maximum intensity with 2 minutes of recovery intra-sets. Pre- and post-exercise, BLa was analysed. In addition, RPE were administered at the end of each 50-m. Differences were detected in the high intensity swimming test on sex (η²p=0.566; p<0.001) and time (η²p=0.233; p<0.001), but not for the interaction time·sex (p>0.05). It was reported an effect for time on BLa (η²p=0.947; p<0.001) and RPE (η²p=0.559; p<0.001), but not for sex nor the interaction time·sex (p>0.05). Although males are faster, not differences were found in BLa, fatigue nor RPE between sexes. These results could be mediated by the all-out nature of the protocol and practical implications suggest that it is not necessary to adapt the training load in high intensity swimming session attending to the sex of the athletes.

Downloads

Download data is not yet available.
Metrics
Views/Downloads
  • Abstract
    107
  • PDF
    59

References

1. Almeida, T. A. F., Massini, D. A., Silva Júnior, O. T., Venditti Júnior, R., Espada, M. A. C., Macedo, A. G., Reis, J. F., Alves, F. B., & Pessôa Filho, D. M. (2022). Time limit and V̇O2 kinetics at maximal aerobic velocity: Continuous vs. intermittent swimming trials. Frontiers in Physiology, 13, 1-10. https://doi.org/10.3389/fphys.2022.982874

2. Almeida, T. A. F., Pessôa Filho, D. M., Espada, M. C., Reis, J. F., Sancassani, A., Massini, D. A., Santos, F. J., & Alves, F. B. (2021). Physiological Responses During High-Intensity Interval Training in Young Swimmers. Frontiers in Physiology, 12, 1-12. https://doi.org/10.3389/fphys.2021.662029

3. Astorino, T. A., & Sheard, A. C. (2019). Does sex mediate the affective response to high intensity interval exercise? Physiology & Behavior, 204, 27–32. https://doi.org/10.1016/j.physbeh.2019.02.005

4. Borg, G. (1998). Borg’s perceived exertion and pain scales. Human Kinetics.

5. Braun, J., Masoud, M., Brixius, K., & Brinkmann, C. (2016). Oxidativer Stress bei Mastersschwimmern nach hochintensivem (Intervall-)Training (HI(I)T). Wiener medizinische Wochenschrift, 166(7-8), 242–249. https://doi.org/10.1007/s10354-016-0451-4

6. Coquart, J. B., Garcin, M., Parfitt, G., Tourny-Chollet, C., & Eston, R. G. (2014). Prediction of maximal or peak oxygen uptake from ratings of perceived exertion. Sports Medicine, 44(5), 563–578. https://doi.org/10.1007/s40279-013-0139-5

7. Crewther, B.T., Cook, C., Cardinale, M., Weatherby, R. P., & Lowe, T. (2011). Two emerging concepts for elite athletes: the short-term effects of testosterone and cortisol on the neuromuscular system and the dose-response training role of these endogenous hormones. Sports Medicine, 41(2), 103–123. https://doi.org/10.2165/11539170-000000000-00000

8. Cuenca-Fernández, F., Boullosa, D., Ruiz-Navarro, J. J., Gay, A., Morales-Ortíz, E., López-Contreras, G., & Arellano, R. (2023). Lower fatigue and faster recovery of ultra-short race pace swimming training sessions. Research in Sports Medicine, 31(1), 21–34. https://doi.org/10.1080/15438627.2021.1929227

9. Dalamitros, A. A., Semaltianou, E., Toubekis, A. G., & Kabasakalis, A. (2021). Muscle Oxygenation, Heart Rate, and Blood Lactate Concentration During Submaximal and Maximal Interval Swimming. Frontiers in Sports and Active Living, 3, 1-6. https://doi.org/10.3389/fspor.2021.759925

10. Faude, O., Meyer, T., Scharhag, J., Weins, F., Urhausen, A., & Kindermann, W. (2008). Volume vs. intensity in the training of competitive swimmers. International Journal of Sports Medicine, 29(11), 906–912. https://doi.org/10.1055/s-2008-1038377

11. Forouzandeh Shahraki, S., Minoonejad, H., & Moghadas Tabrizi, Y. (2020). Comparison of some intrinsic risk factors of shoulder injury in three phases of menstrual cycle in collegiate female athletes. Physical Therapy in Sport, 43, 195–203. https://doi.org/10.1016/j.ptsp.2020.02.010

12. Fournier, G., Bernard, C., Cievet-Bonfils, M., Kenney, R., Pingon, M., Sappey-Marinier, E., Chazaud, B., Gondin, J., & Servien, E. (2022). Sex differences in semitendinosus muscle fiber-type composition. Scandinavian Journal of Medicine & Science in Sports, 32(4), 720–727. https://doi.org/10.1111/sms.14127

13. Gallagher, D., Visser, M., De Meersman, R. E., Sepúlveda, D., Baumgartner, R. N., Pierson, R. N., Harris, T., & Heymsfield, S. B. (1997). Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. Journal of Applied Physiology, 83(1), 229–239. https://doi.org/10.1152/jappl.1997.83.1.229

14. Garcin, M., Fleury, A., Mille-Hamard, L., & Billat, V. (2005). Sex-related differences in ratings of perceived exertion and estimated time limit. International Journal of Sports Medicine, 26(8), 675–681. https://doi.org/10.1055/s-2004-830440

15. Goodwin, M. L., Harris, J. E., Hernández, A., & Gladden, L. B. (2007). Blood lactate measurements and analysis during exercise: a guide for clinicians. Journal of Diabetes Science and Technology, 1(4), 558–569. https://doi.org/10.1177/193229680700100414

16. Handelsman, D. J., Hirschberg, A. L., & Bermon, S. (2018). Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocrine Reviews, 39(5), 803–829. https://doi.org/10.1210/er.2018-00020

17. Handelsman, D. J., Sikaris, K., & Ly, L. P. (2016). Estimating age-specific trends in circulating testosterone and sex hormone-binding globulin in males and females across the lifespan. Annals of Clinical Biochemistry, 53, 377–384. https://doi.org/10.1177/0004563215610589

18. Herrera, R., & López-Plaza, D. (2023). Effects of a maximal strength training program in competitive swimmers: a systematic review. Archivos de Medicina Del Deporte, 40, 77–85. https://doi.org/10.18176/archmeddeporte.00133

19. Hunter, S. K., S Angadi, S., Bhargava, A., Harper, J., Hirschberg, A. L., D Levine, B., L Moreau, K., J Nokoff, N., Stachenfeld, N. S., & Bermon, S. (2023). The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Medicine and Science in Sports and Exercise, 55(12), 2328–2360. https://doi.org/10.1249/MSS.0000000000003300

20. Kabasakalis, A., Nikolaidis, S., Tsalis, G., & Mougios, V. (2020). Response of Blood Biomarkers to Sprint Interval Swimming. International Journal of Sports Physiology and Performance, 15(10), 1442–1447. https://doi.org/10.1123/ijspp.2019-0747

21. Kabasakalis, A., Nikolaidis, S., Tsalis, G., & Mougios, V. (2022). Low-Volume Sprint Interval Swimming Is Sufficient to Increase Blood Metabolic Biomarkers in Master Swimmers. Research Quarterly for Exercise and Sport, 93(2), 318–324. https://doi.org/10.1080/02701367.2020.1832183

22. Karabiyik, H., Gülü, M., Yapici, H., Iscan, F., Yagin, F. H., Durmuş, T., Gürkan, O., Güler, M., Ayan, S., & Alwhaibi, R. (2023). Effects of 12 Weeks of High-, Moderate-, and Low-Volume Training on Performance Parameters in Adolescent Swimmers. Applied Sciences, 13(20), 1-17. https://doi.org/10.3390/app132011366

23. Karayigit, R., Ramirez-Campillo, R., Yasli, B.C., Gabrys, T., Benesova, D., & Esen, O. (2022). High Dose of Acute Normobaric Hypoxia Does Not Adversely Affect Sprint Interval Training, Cognitive Performance and Heart Rate Variability in Males and Females. Biology, 11(10), 1-12. https://doi.org/10.3390/biology11101463

24. Kelly, M., Gibney, G., Mullins, J., Ward, T., Donne, B., & O’Brien, M. (1992). A study of blood lactate profiles across different swimming strokes. In: Biomechanics and Medicine in Swimming. Swimming Science VI. D. MacLaren, A. Lees, and T. Reilly, eds. London, United Kingdom: E. & F.N. Spon, 227–233.

25. Kilen, A., Larsson, T. H., Jørgensen, M., Johansen, L., Jørgensen, S., & Nordsborg, N.B. (2014). Effects of 12 weeks high-intensity & reduced-volume training in elite athletes. PloS one, 9(4), 1-8. https://doi.org/10.1371/journal.pone.0095025

26. La Monica, M. B., Fukuda, D. H., Starling-Smith, T. M., Clark, N. W., Morales, J., Hoffman, J. R., & Stout, J. R. (2019). Examining work-to-rest ratios to optimize upper body sprint interval training. Respiratory physiology & neurobiology, 262, 12–19. https://doi.org/10.1016/j.resp.2019.01.005

27. Laurent, C. M., Vervaecke, L. S., Kutz, M. R., & Green, J. M. (2014). Sex-specific responses to self-paced, high-intensity interval training with variable recovery periods. Journal of Strength and Conditioning Research, 28(4), 920–927. https://doi.org/10.1519/JSC.0b013e3182a1f574

28. Lavoie, J. M., & Montpetit, R. R. (1986). Applied physiology of swimming. Sports Medicine, 3(3), 165–189. https://doi.org/10.2165/00007256-198603030-00002

29. Lock, M., Yousef, I., McFadden, B., Mansoor, H., & Townsend, N. (2024). Cardiorespiratory Fitness and Performance Adaptations to High-Intensity Interval Training: Are There Differences Between Men and Women? A Systematic Review with Meta-Analyses. Sports Medicine, 54(1), 127–167. https://doi.org/10.1007/s40279-023-01914-0

30. Magal, M., Liette, N. C., Crowley, S. K., Hoffman, J. R., & Thomas, K. S. (2021). Sex-Based Performance Responses to an Acute Sprint Interval Cycling Training Session in Collegiate Athletes. Research Quarterly for Exercise and Sport, 92(3), 469–476. https://doi.org/10.1080/02701367.2020.1751026

31. Maglischo, E. W. (2003). Swimming fastest. Human kinetics. Champaign, IL (USA).

32. Marinho, D. A., Ferreira, M. I., Barbosa, T. M., Vilaça-Alves, J., Costa, M. J., Ferraz, R., & P. Neiva, H. (2020). Energetic and Biomechanical Contributions for Longitudinal Performance in Master Swimmers. Journal of Functional Morphology and Kinesiology, 5(2), 1-12. https://doi.org/10.3390/jfmk5020037

33. Massini, D. A., Almeida, T. A. F., Vasconcelos, C. M. T., Macedo, A. G., Espada, M. A. C., Reis, J. F., Alves, F. J. B., Fernandes, R. J. P., & Pessôa Filho, D. M. (2021). Are Young Swimmers Short and Middle Distances Energy Cost Sex-Specific?. Frontiers in Physiology, 12, 1-13. https://doi.org/10.3389/fphys.2021.796886

34. Maud, P. J., & Shultz, B. B. (1986). Gender comparisons in anaerobic power and anaerobic capacity tests. British Journal of Sports Medicine, 20(2), 51–54. https://doi.org/10.1136/bjsm.20.2.51

35. McGibbon, K. E., Pyne, D. B., Shephard, M. E., & Thompson, K. G. (2018). Pacing in Swimming: A Systematic Review. Sports Medicine, 48(7), 1621–1633. https://doi.org/10.1007/s40279-018-0901-9

36. McNulty, K. L., Elliott-Sale, K. J., Dolan, E., Swinton, P. A., Ansdell, P., Goodall, S., Thomas, K., & Hicks, K. M. (2020). The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Medicine, 50(10), 1813–1827. https://doi.org/10.1007/s40279-020-01319-3

37. Miller, A. E., MacDougall, J. D., Tarnopolsky, M. A., & Sale, D. G. (1993). Gender differences in strength and muscle fiber characteristics. European Journal of Applied Physiology and Occupational Physiology, 66(3), 254–262. https://doi.org/10.1007/BF00235103

38. Moser, C., Sousa, C. V., Olher, R. R., Nikolaidis, P. T., & Knechtle, B. (2020). Pacing in World-Class Age Group Swimmers in 100 and 200 m Freestyle, Backstroke, Breaststroke, and Butterfly. International Journal of Environmental Research and Public Health, 17(11), 1-10. https://doi.org/10.3390/ijerph17113875

39. Notelovitz M. (2002). Androgen effects on bone and muscle. Fertility and Sterility, 77, 34–41. https://doi.org/10.1016/s0015-0282(02)02968-0

40. Papadimitriou, K., Kabasakalis, A., Papadopoulos, A., Mavridis, G., & Tsalis, G. (2023). Comparison of Ultra-Short Race Pace and High-Intensity Interval Training in Age Group Competitive Swimmers. Sports, 11(9), 1-13. https://doi.org/10.3390/sports11090186

41. Pendergast, D. R., Di Prampero, P. E., Craig, A. B. Jr, Wilson, D. R., & Rennie, D. W. (1977). Quantitative analysis of the front crawl in men and women. Journal of Applied Physiology, 43(3), 475–479. https://doi.org/10.1152/jappl.1977.43.3.475

42. Pugliese, L., Porcelli, S., Bonato, M., Pavei, G., La Torre, A., Maggioni, M. A., Bellistri, G., & Marzorati, M. (2015). Effects of manipulating volume and intensity training in masters swimmers. International Journal of Sports Physiology and Performance, 10(7), 907–912. https://doi.org/10.1123/ijspp.2014-0171

43. Rael, B., Alfaro-Magallanes, V. M., Romero-Parra, N., Castro, E. A., Cupeiro, R., de Jonge, X. A. K. J., Wehrwein, E. A., & Peinado, A. B. (2021). Menstrual cycle phases influence on cardiorespiratory response to exercise in endurance-trained females. International Journal of Environmental Research and Public Health, 18(3), 1-12. https://doi.org/10.3390/ijerph18030860

44. Richardson, J.T.E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135–147. https://doi.org/https://doi.org/10.1016/j.edurev.2010.12.001

45. Sandbakk, Ø., Solli, G. S., & Holmberg, H. C. (2018). Sex Differences in World-Record Performance: The Influence of Sport Discipline and Competition Duration. International journal of Sports Physiology and Performance, 13(1), 2–8. https://doi.org/10.1123/ijspp.2017-0196

46. Seiler, S., De Koning, J. J., & Foster, C. (2007). The fall and rise of the gender difference in elite anaerobic performance 1952-2006. Medicine and Science in Sports and Exercise, 39(3), 534–540. https://doi.org/10.1249/01.mss.0000247005.17342.2b

47. Senefeld, J. W., Clayburn, A. J., Baker, S. E., Carter, R. E., Johnson, P. W., & Joyner, M. J. (2019). Sex differences in youth elite swimming. PloS One, 14(11), 1-9. https://doi.org/10.1371/journal.pone.0225724

48. Soultanakis, H. N., Mandaloufas, M. F., & Platanou, T. I. (2012). Lactate threshold and performance adaptations to 4 weeks of training in untrained swimmers: volume vs. intensity. Journal of Strength and Conditioning Research, 26(1), 131–137. https://doi.org/10.1519/JSC.0b013e31821eb7bd

49. Staron, R. S., Hagerman, F. C., Hikida, R. S., Murray, T. F., Hostler, D. P., Crill, M. T., Ragg, K. E., & Toma, K. (2000). Fiber type composition of the vastus lateralis muscle of young men and women. The Journal of Histochemistry and Cytochemistry, 48(5), 623–629. https://doi.org/10.1177/002215540004800506

50. Tanaka, H., & Seals, D. R. (1997). Age and gender interactions in physiological functional capacity: insight from swimming performance. Journal of Applied Physiology, 82(3), 846–851. https://doi.org/10.1152/jappl.1997.82.3.846

51. Terzi, E., Skari, A., Nikolaidis, S., Papadimitriou, K., Kabasakalis, A., & Mougios, V. (2021). Relevance of a Sprint Interval Swim Training Set to the 100-Meter Freestyle Event Based on Blood Lactate and Kinematic Variables. Journal of Human Kinetics, 80, 153–161. https://doi.org/10.2478/hukin-2021-0091

52. Toussaint, H. M., & Hollander, A. P. (1994). Energetics of competitive swimming. Implications for training programmes. Sports Medicine, 18(6), 384–405. https://doi.org/10.2165/00007256-199418060-00004

53. Truijens, M. J., Rodríguez, F. A., Townsend, N. E., Stray-Gundersen, J., Gore, C. J., & Levine, B. D. (2008). The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners. Journal of Applied Physiology, 104(2), 328–337. https://doi.org/10.1152/japplphysiol.01324.2006

54. Ueda, T., & Kurokawa, T. (1995). Relationships between perceived exertion and physiological variables during swimming. International Journal of Sports Medicine, 16(6), 385–389. https://doi.org/10.1055/s-2007-973025

55. Weber, C. L., Chia, M., & Inbar, O. (2006). Gender differences in anaerobic power of the arms and legs--a scaling issue. Medicine and Science in Sports and Exercise, 38(1), 129–137. https://doi.org/10.1249/01.mss.0000179902.31527.2c

56. Zacca, R., Azevedo, R., Peterson Silveira, R., Vilas-Boas, J. P., Pyne, D. B., Castro, F. A. S., & Fernandes, R. J. (2019). Comparison of Incremental Intermittent and Time Trial Testing in Age-Group Swimmers. Journal of Strength and Conditioning Research, 33(3), 801–810. https://doi.org/10.1519/JSC.0000000000002087

57. Zamparo, P., Cortesi, M., & Gatta, G. (2020). The energy cost of swimming and its determinants. European Journal of Applied Physiology, 120(1), 41–66. https://doi.org/10.1007/s00421-019-04270-y

Published
24-12-2025
How to Cite
Moreno Lara, J., López León, I., Leitão, L., Fernandes da Silva, S., Sánchez-Oliver, A. J., & Domínguez, R. (2025). The influence of sex on high intensity swimming test. SPORT TK-EuroAmerican Journal of Sport Sciences, 14, 149. https://doi.org/10.6018/sportk.608401
Issue
Section
Articles